Stomach and Intestinal Worms

- Gastrointestinal nematodes most important health problem for small ruminant producers in eastern U.S.
- Most important is barber pole worm, _Haemonchus contortus_
 - Abomasal parasite
 - Extraordinary in ability to exploit environments, management practices
 - Typically a warm weather worm but survives everywhere
 - In summer predominant even in Vermont

- _Haemonchus contortus_
 - Blood sucking parasite
 - Anemia and bottle jaw
 - Not diarrhea
 - Subclinical losses possible
 - Related worms can contribute to problems
 - May cause diarrhea

Worms are not a new problem!
In the 1950's dewormers included carbon tetrachloride and copper sulphate/mustard

Anne Zajac, DVM PhD
Virginia Tech
Blacksburg VA
Life as a Worm

- All common worms have same life cycle
 - Eggs passed in manure
 - 2 molts to infective stage in 3 days
 - Takes about 5-7 days, more when cooler
 - Larvae move onto grass
 - Sheep and goats infected when grazing
 - 200 females produce up to 1 million eggs/day

Life as a Worm

- How do worms survive the winter?
 - On pasture as eggs, larvae
 - Only some species can make it through the winter
 - Survival of Haemonchus poor in cold weather
 - As larvae in the host in a dormant state (arrested or hypodietic)
 - No disease, no eggs in feces

Managing Parasites—Keys to Success

- Parasite losses are a management disease
- We have ways of controlling parasites
- Each producer has to decide how high a priority parasite control is and which keys work best for him/him

Most Popular Key—Drugs

- Victory for Science!
- Since 1960's have have had fantastic drugs for treatment of sheep and goat GI nematodes
 - Highly effective against adults and larvae (>95%)
 - Safe
 - Nonprescription
 - CHEAP
Anthelmintics
- Modern dewormers in 3 groups
- A worm population resistant to 1 drug in a group, resistant to all drugs in group
- May seem that one drug in a group is no longer effective, but that is only temporary

<table>
<thead>
<tr>
<th>Anthelmintic Class</th>
<th>Present in 3 Groups</th>
<th>Present in 2 Groups</th>
<th>Present in 1 Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivermectin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albendazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrantel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What happened?
- GI worms greater problem in small ruminants than 20 years ago
- Resistance—A heritable change in a parasite population produced by drug use so that the drug no longer works as well as it did
 - 1964 first reports of resistance to TBZ
 - 1981 field resistance to levamisole
 - 1988 resistance to ivermectin

Virginia Goat Farm—1995
- Reduction in fecal egg counts following treatment
 - Fenbendazole: 95% (CI: 93%, 97%)
 - Levamisole: 70% (CI: 47%, 87%)
 - Ivermectin (1996): 70% (CI: 41%, 93%)
- Widespread in sheep and goats in eastern US

Zejac and Giprao, 2000, Vet Pathology

Anthelmintic Resistance
- Difficult to detect in early stages—WHY?
- Each worm inherits genetic material from parents determining resistance (R) or susceptibility (S) to a drug
- Random mutation gives rise to R alleles

![Anthelmintic Resistance Diagram]
DRUG RESISTANCE

- What does it look like to producer? (Sectinal example—could develop faster or slower)

Year 1 90% effective
Year 4 80% effective
Year 5 70% effective
Year 6 50% effective
Year 7 30% effective
Year 8 10% effective

By the time resistance is typically detected, so many worms are resistant that withholding drug does lead to return of susceptibility.

Why did resistance in small ruminants develop so rapidly?
- Highly pathogenic parasites like *Haemonchus* cause serious disease and death
- Convenience and availability of drugs
- Misguided recommendations from specialists and the pharmaceutical industry

Where Did We Go Wrong?
- Recommended frequent treatments to prevent any clinical disease
- Recommended treating all animals in herd/flock
 - Convenient
 - Prevented subclinical loss of production
- Result is a control program based on the most susceptible animals

Resistant worms must mate to produce offspring. Gradual increase in resistant population.
Where Do Worm Problems Occur

- Animals with temporary low immunity
 - Young—before immunity develops
- Stressed
 - Lactation
 - Disease
 - Poor nutrition
- ANIMALS WITH INHERITED HIGH SUSCEPTIBILITY

Individual Susceptibility

- Under normal conditions, most animals control their parasites
- Parasite populations overdispersed (aggregated)
- Much of an individual animal's susceptibility is heritable (m.a.o.a)

Strongyloid Parasite Population—Fecal Egg Counts

Where Did We Go Wrong?

- Recommended frequent treatments to prevent any clinical disease
- Recommended treating all animals in herd/flock
- Only the most susceptible animals require treatment
- Recommendations decreased REFUGIA, allowed rapid accumulation of resistant parasites
Refugia

- Refugia is now understood to be most important factor in slowing rate of resistance
- Other common recommendations that effectively reduce refugia
 - Treating and moving to clean pastures
 - Treating when there aren’t many worms on pasture (drought, end of winter)

Use Drugs Wisely

- Rational drug use to minimize rate of development of resistance
 - Selective deworming programs
 - By groups (e.g. lambs vs dry cows)
 - FAMACHA practical way to evaluate individuals

Use drugs wisely

- Use the correct dose
- Dose for heaviest animal in each category
- Weight tapes only accurate for dairy goats
- Don’t use out of date products
- Place drenches in the back of the mouth
- Don’t bypass the rumen
- When animals added, deworm with 2 or 3 drugs from different groups, quarantine
Use drugs wisely
- Restrict feed intake for 24 hours prior to treatment (BZ and ivermectin)
 - Withholding feed decreases digesta flow rate leading to an increase in drug efficacy
 - Never in late pregnancy
- Repeat dose in 12 hours (BZ)
- Can substantially improve efficacy (temporarily) if resistance is present and help slow resistance if not yet present

Other Antiparasitic Compounds
- New drugs
 - Amino acetonitrile
 - Monoprotic Zolvit
- Different class of drugs but will select for resistant worms just as quickly
- Copper boluses
 - Beneficial effects of copper oxide wires on *Haemonchus*

Use Drugs Wisely
- Test for Resistance
 - Fecal egg count reduction test
 - Work with vet
 - Can you do it yourself?
 - Need to invest in good microscope
 - Must do egg counts
 - Will always find eggs, numbers important
 - Drenchrite test
 - University of Georgia
 - More convenient for producer

Other important keys to success
- Management to reduce exposure of vulnerable animals
 - Limit exposure to larvae
 - Change reproductive cycle
 - Limited or no pasture exposure
 - Rotation with parasites in mind!
Other important keys to success

- Increase herd/flock resistance to parasites
 - Individuals
 - Monitor with fecal egg counts, FAMACHA scores
 - Positive selection difficult with small groups
 - New test in New Zealand measuring salivary IgA
 - No genetic markers

Resistance is Here, What Next?

- Increase herd/flock resistance to parasites
 - Breeds
 - Hair sheep
 - Kathadin most practical, but probably not most resistant
 - Not much published experimental data
 - Goats—less clear cut

Other Keys to Success

- Good nutrition
 - Parasites take advantage of animals in poor condition
 - Energy, protein, vitamins and minerals all important in producing adequate immune response
 - Some studies have shown beneficial affect of feeding extra protein to growing animals
 - Lactating animals can be more vulnerable to parasites, need good diet

Other Keys to Success

- Phytotherapy
 - Intense interest in naturally occurring antiparasitic compounds in plants
 - Feoras
 - Medicinal plants
 - Most research with plants with condensed tannins
 - Promising results with sericea lespedea
Plant Extracts as Dewormers

- Large numbers of plant extracts have been tested in the lab and show anthelmintic effects
- Fewer show effects in vivo and results inconsistent

Downside of plant anthelmintics and herbal dewormers

- Difficult to compare studies and establish protocols
- Active ingredients vary with age of plant, local environmental conditions
- Extracts prepared in different ways by different investigators
- Pharmaceutical companies have no/little interest in investing in products
- Who will pay for the research to establish best use?

Looking into the future

- Vaccine
 - Not anytime soon
- Predatory fungus
 - Reduces number of larvae in manure
 - Not anytime soon
- Good management will always be the key!

Other Common/Important Parasites

- Coccidia
 - Protozoan parasites
 - Infect all small ruminants but host specific
 - Sometimes cause diarrhea in young animals, usually under conditions of stress
 - Not affected by dewormers
Other Common/Important Parasites

- **Tapeworms**
 - Common in young animals
 - Owners see segments, but worms usually don't cause problems
 - Treatment usually with drenches like Valbazen, Safeguard

Other Common/Important Parasites

- **Meningeal Worm (brain worm)**
 - *Parasite of white tailed deer*
 - Transmitted by snail/dug intermediate host
 - Small ruminant infection, MAY cause signs clinical signs
 - Range from transient lameness, gait abnormalities to paralysis
 - Llamas/alpacas more susceptible than sheep/goat
 - Treatment difficult, camelid owners use routine macrolide treatments, can contribute to resistance in GI worms
Managing Internal Parasites in Sheep and Goats

By Margo Hale
NCAT Agriculture Specialist
© NCAT 2006

Contents
Introduction 1
Parasite Primer 2
Parasitism 2
Resistance to Dewormers 3
Pasture Management ... 4
New Techniques 5
Other Techniques 6
Conclusion 7
Resources 7
References 8

Internal parasite management, especially of *Haemonchus contortus* (barberpole worm, stomach worm), is a primary concern for the majority of sheep and goat producers. These parasites have become more difficult to manage because of developed resistance to nearly all available dewormers. This publication discusses new techniques to manage parasites and to prolong the efficacy of dewormers. New management tools that remain under investigation are also discussed. A list of resources follows the narrative.

Owners of this Katahdin ewe and her lambs are able to manage internal parasites using sustainable techniques. NCAT photo by Margo Hale.

Introduction

The management of internal parasites, primarily *Haemonchus contortus* (barberpole worm), is considered by many to be the biggest production concern for small ruminants. “There are many important diseases of sheep and goats,” notes University of Georgia researcher Ray Kaplan, DVM, PhD, “but none are as ubiquitous or present as direct a threat to the health of goats as internal parasites.” (Kaplan, 2004a). The cost of internal parasite infection includes treatment expense, reduced animal weight gains, and even animal death.

These parasites are difficult to manage because on some farms they have developed resistance to all available commercial dewormers. (Zajac, Gipson, 2000) Resistance to dewormers is now seen worldwide (Kaplan, 2004b). Producers can no longer rely on drugs alone to control internal parasites. Rather, an integrated approach that relies on sustainable methods to manage internal parasites should be employed.
Parasite Primer

Internal parasites (worms) exist by feeding off of their host. Some types do this directly, by attaching to the wall of the digestive system and feeding on the host's blood. These types of parasites cause anemia in the host, as well as other symptoms. Haemonchus contortus (barberpole worm) is one example of this type. Others live off the nutrients eaten by the host; these cause weight loss but not anemia.

Mature parasites breed inside the host and “lay eggs,” which pass through the host and are shed in the feces. After the eggs pass out of the host, they hatch into larvae. Warm, humid conditions encourage hatching. The larvae need moisture to develop and move. They migrate out of the feces and up blades of grass (usually 1 to 2 inches). When an animal (sheep or goat) grazes, they may take in parasite larvae along with the grass blade. An animal can also pick up parasite larvae by eating from a feed trough that is contaminated by manure.

Parasite numbers increase over time when conditions are favorable (warm, wet). Internal parasites get out of control and cause damage when their numbers grow beyond what the animal can tolerate. In order to manage internal parasites, it is important to understand the parasite cycle and factors that encourage their production.

Parasitism

Animals raised in confinement or on pasture-based systems will almost certainly be exposed to internal parasites at some point in their lives. Dry environments, such as arid rangelands, will pose less of a threat for parasite infections. Warm, humid climates are ideal for worms, and therefore animals will have more problems with internal parasites in these climates.

Sheep and goats should be managed so that parasitism is not evident. Sheep and goats will always host some level of parasite burden. Certain signs of parasitism are seen when the parasite load becomes excessive or when the animal’s immunity can no longer overcome the adverse effects of the parasitism. (Scarfe, 1993) Young animals and those with weakened immune systems due to other diseases are most affected by internal parasitism. A combination of treatment and management is necessary to control parasitism so that it will not cause economic loss to the producer. (Scarfe, 1993)

While it is ideal to manage animals so there are no visible effects of parasitism, some will nonetheless succumb to the burden of internal parasites. Learn to recognize the signs of internal parasite infections and offer early treatment.
Loss of condition and rough hair coat indicate parasitism.
Photo courtesy of Jean-Marie Lugnibuhl.

Bottle jaw is a sign of parasitism.
Photo courtesy of Jean-Marie Lugnibuhl.

<table>
<thead>
<tr>
<th>Signs of Parasitism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of condition</td>
</tr>
<tr>
<td>Rough hair coat</td>
</tr>
<tr>
<td>Scours, diarrhea</td>
</tr>
<tr>
<td>Bottle jaw</td>
</tr>
<tr>
<td>Pale mucous membranes (eyelids, gums), indicating anemia</td>
</tr>
<tr>
<td>Death</td>
</tr>
</tbody>
</table>

Resistance to Dewormers

Producers were once instructed to deworm all of their animals every three to six months. Many producers dewormed even more often, as often as every four weeks in humid climates. It is now known that this practice is not sustainable.

Drug resistance is the ability of worms in a population to survive drug treatments that are generally effective against the same species and stage of infection at the same dose rate. (Kaplan, 2004b) Over-use of dewormers has led to resistance, and available dewormers are now ineffective. In an article from 1993, David Scarfe predicted the development of drug resistance.

Suppressive deworming is probably the most effective means of keeping parasite numbers lowered for a period of time. However, this method will also eventually lead to resistance to the anthelmintics(s) used much more rapidly than if other strategies of control are utilized. One point to consider here is alternating the use of different drugs.

It is considered by this author, and several expert parasitologists, that rapid rotation of different drugs is ill-advised as this will lead to resistance of multiple drugs – something that the small ruminant industries certainly do not need. (Scarfe, 1993)

Scarfe recognized the unsustainable practices that were being used long before parasites were resistant to dewormers in the U.S.

Some farms still have dewormers that continue to work, while others have no effective dewormers. This is a problem because no new dewormersc for sheep and goats are currently under development. (Kaplan, 2004b)

Development of Resistance to Dewormers

Internal parasites, especially *H. contortus*, have developed drug resistance. Drug treatment gets rid of the worms that are susceptible to that particular drug; resistant parasites survive and pass on “resistant” genes.
Overview of Available Dewormers for Sheep and Goats

Several types of dewormers are available for use in sheep and goats. Many are not approved for use in sheep and goats, however, so work with a veterinarian to ensure proper "off-label" use. The different classes of dewormers have different modes to kill worms. The level of resistance depends on the class of dewormer and how often the drug was used on a particular farm.

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Common Names/ Brands</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td>Albendazole (Valbazen*), Fenbendazole (Safeguard*)</td>
<td>High prevalence of resistance</td>
</tr>
<tr>
<td>Avermectin/ Milbemycins</td>
<td>Ivermectin (Ivomec*)</td>
<td>Ivermectin—least effective of all available drugs</td>
</tr>
<tr>
<td></td>
<td>Moxidectin (Cydectin*)</td>
<td>Moxidectin—resistance becoming common where used frequently</td>
</tr>
<tr>
<td>Imidazothiazoles/ Tetrahydropyrimidine</td>
<td>Levamisole (Tramisol*), Pyrantel (Strongid*), Morantel (Rumantel*)</td>
<td>Low to moderate prevalence of resistance</td>
</tr>
</tbody>
</table>

Worms that are not treated are called "refugia." The concept of refugia has been largely overlooked in the past. Having some worms in refugia (not treated) insures that a level of genes remain sensitive to dewormers. (Kaplan, n.d.) A surviving population of untreated worms dilutes the frequency of resistant genes. Consequently, when a dewormer is required, it will be effective because the worms will be susceptible to treatment. (Kaplan, n.d.)

When fewer numbers of animals receive treatment, the refugia population remains large. The more refugia, the better. Sustainable techniques, such as FAMACHA®, fight drug resistance by increasing refugia.

In contrast, several practices accelerate drug resistance. They include frequent deworming (more than three times a year), underdosing (often caused by miscalculation of body weight), treating and moving to clean pasture, and treating all animals, regardless of need. These practices lead to resistance because they decrease the number of worms susceptible to dewormers (refugia).

Since no dewormer is 100 percent effective 100 percent of the time, worms that survive a dose of dewormer are resistant to that dewormer. Frequent deworming increases the rate resistance develops.

Each time animals are dewormed, the susceptible worms are killed. The strong ones survive and lead to a population of very resistant worms. Underdosing causes larger numbers of stronger worms to survive. The weakest, most susceptible worms are killed. But because of the weak dose, more of the stronger worms will be able to survive and reproduce, creating a population of stronger worms. Once an animal has been treated, only resistant worms remain. If the animals are moved to a clean pasture they deposit only resistant worms on the pasture. There are no susceptible worms to dilute the worm population. Treating all animals regardless of need ignores the importance of refugia and will lead, in time, to a population of worms unkillable by dewormers.

Pasture Management

Numerous techniques can be used to control parasitism. Pasture management should be a primary tool to control internal parasites. Sheep and goats ingest infective parasite larvae from pasture. The rate at which they are ingested can be controlled through pasture management.
Most worm larvae crawl up the plant only one to two inches from the ground. Preventing animals from grazing below that point decreases the number of worm larvae ingested. Animals that eat closer to the ground tend to have more problems with internal parasites. It is important to monitor animals and the pasture. Allowing animals to graze pastures too short results in more parasites consumed and reduced feed intake, therefore harming the animal in two ways. It also inhibits pasture regrowth.

Larvae migrate no more than 12 inches from a manure pile. Livestock not forced to eat close to their own manure will consume fewer larvae. Providing areas where animals can browse (eat brush, small trees, etc.) and eat higher off of the ground helps to control parasite problems.

Decreasing the stocking rate decreases the number of worms spread on a pasture. The more animals you have on one pasture, the more densely the worms are deposited. Animals on densely stocked pastures are more likely to have parasite problems. Grazing sheep and goats with cattle, or in a rotation with cattle, can also reduce internal parasite problems. Cattle do not share the same internal parasites as sheep and goats. Cattle consume sheep and goat parasite larvae, which helps “clean” the pasture for the small ruminants.

Certain forages have also been shown to control parasite problems. Tannin-rich forages, such as sericea lespedeza, have been shown to help reduce internal parasite egg counts. (Min and Hart, 2003; Shaik et al., 2004) Other plants, including plantain, chicory, and wormwood, also have an anthelmintic effect, although wormwood also produces toxic compounds. Providing tannin-rich forages and diverse pastures can help animals battle internal parasites.

New Techniques

FAMACHA®

FAMACHA® is a system for classifying animals into categories based upon level of anemia. (Kaplan, n.d.) It was developed in South Africa and has been validated in the U.S. (Kaplan et al, 2004)

This system identifies anemic animals on a 1 to 5 scale by examining the eyelids of sheep and goats (see photo next page). The system treats only animals that are anemic (a sign of parasitism). This reduces the use of dewormers, slows the development of resistant worms, and saves the producer money. Most importantly, it also allows the producer to select animals that are healthier. By breeding the healthiest animals and culling the weaker individuals, the flock or herd becomes stronger over time. FAMACHA® is only effective for
FAMACHA® System Saves Money and Reduces Stress

On Maple Gorge Farm, in Prairie Grove, Arkansas, busy schedules prevented the farmers from monitoring parasites. By late summer, the sheep had been grazing for months with no treatment. The farmers noticed a young lamb with bottle jaw and feared they had a huge problem on their hands.

They considered not bringing the animals in for treatment because they were low on dewormer. They knew they wouldn't have enough to treat all of the animals. Then they remembered the FAMACHA® system that they had recently been trained in. Using the FAMACHA® system, they decided to sort off, identify and treat only the 4s and 5s (anemic animals), and a few 3s that were thin.

To their surprise, only 9 of the 65 sheep actually needed treatment. Identification numbers and FAMACHA® scores were recorded. They decided any ewe scoring a 4 or 5 would not be kept in the flock.

This whole process took less than an hour. Treating only the animals in need reduced stress for the animals and farmers, and also saved money. After using the FAMACHA® system and seeing how easy it was and the impact it had on their flock, the farmers at Maple Gorge Farm are believers in the system.

the treatment of *H. contortus*. Producers must be trained by a veterinarian or other trained animal health professional in order to use FAMACHA®. (Kaplan, n.d.) However, this technique is simple to learn and quick and easy to use. For more information on FAMACHA®, see Other Resources, page 8.

Other Techniques

Selecting Resistant Animals

Several other techniques can be used to help manage internal parasites. There are several breeds of sheep and goats that show resistance to parasites. There is something in their genetic makeup that causes them to host a smaller parasite load. Breeds such as Gulf Coast Native, St. Croix, Katahdin, and Barbados Blackbelly show an increased resistance to parasite loads. Spanish, Myotonic, and Kiko goat breeds have also shown a tolerance to parasites. Resistance will vary within breeds as well. Some animals, regardless of breed, will be more resistant to parasites than others. Having parasite-resistant animals will decrease the need for dewormers.

Within any breed, certain animals are more tolerant of parasite loads than others. These resilient animals can host a large parasite burden, yet show few signs of parasitism. Some animals will carry a heavier parasite load than others. Research shows that 20 to 30 percent of the animals carry 70 to 80 percent of the worms. (Kaplan, n.d.) Producers should cull animals that are always “wormy,” and select for animals that have a natural resistance or tolerance to a slight parasite burden. The FAMACHA® system will help you identify those more tolerant animals.

Copper Wire Particles

Recent research has been performed on the use of copper wire particles to control internal parasites. Studies show that copper wire particle boluses administered to lambs decrease parasite loads. (Burke et al., 2004) However, higher doses may increase the risk for copper toxicity in sheep. Copper wire particle treatments do not appear to be effective in mature sheep (Burke et al., 2005), but may work in mature goats. (Chartier et al., 2000)
Smart Drenching

Smart Drenching refers to the ways producers can use dewormers (drenches) more selectively and effectively.
—Southern Consortium for Small Ruminant Parasite Control, SCSRPC, n.d.

Used in conjunction with FAMACHA®, Smart Drenching helps slow the development of parasite resistance.

The components of Smart Drenching are:

1. Find out which dewormers work by performing a fecal egg count reduction test or a DrenchRite larval developmental assay.
2. Weigh each animal prior to deworming. Double the cattle/sheep dose when deworming goats for all dewormers, except Levamisole, which should be dosed at 1.5 times the cattle/sheep dose in goats.
3. Deliver the dewormer over the tongue in the back of the throat with a drench tip or drench gun.
4. Withhold feed 12 to 24 hours prior to drenching with benzimidazoles, ivermectin, doramectin, and Moxidectin, if possible.
5. Benzimidazole efficacy is greatly enhanced by repeating the drench 12 hours after the first dose. Albendazole should not be used during early pregnancy (during buck/ram exposure and up to 30 days after their removal).
6. Simultaneously use two classes of dewormers if resistance is suspected.
7. Drench only the animals that need treatment. (SCSRPC, n.d.)

Research is still underway on this technique, especially for long-term studies to determine the copper levels that are toxic to sheep.

Nematode-Trapping Fungus

Another tool currently being researched is the use of nematode-trapping fungus. This fungus traps parasite larva in the feces, interrupting its life cycle. Research has shown that it is “effective in significantly reducing development of L3 and appears to be an effective tool for biocontrol of parasitic nematodes in goats” (Terrill et al., 2004). The use of these fungi is still being researched.

Conclusion

Control of internal parasites in sheep and goats can be a daunting task. Previous control methods are no longer viable, so new techniques must be used. Techniques such as increased pasture management, Smart Drenching, FAMACHA®, and selecting parasite-resistant animals can help to manage internal parasites. These techniques reduce dependence on dewormers and lead to a more sustainable parasite management program. New techniques, such as copper wire particles and nematode-trapping fungus, are being researched and developed. These developments may increase the tools available to battle internal parasites of small ruminants.

Resources

The following publications are available from ATTRA. These publications are free of cost. Copies can be requested by calling 800-346-9140 or at our website: www.attra.ncat.org.
- Goats: Sustainable Production Overview
- Meat Goats: Sustainable Production
- Dairy Goats: Sustainable Production
- Sustainable Sheep Production
- Dairy Sheep
- Small Ruminant Sustainability Checksheets
- Small Ruminant Resources
- Integrated Parasite Management for Livestock
- Predator Control for Sustainable and Organic Livestock Production
- Multispecies Grazing
- Matching Livestock and Forage Resources
- Rotational Grazing
- Pastures: Sustainable Management
Other Resources
Southern Consortium for Small Ruminant Parasite Control, www.scsrpc.org
Association of Small Ruminant Practitioners
1910 Lyda Avenue, Bowling Green, KY 42104-5809
Phone: 270-793-0781, http://aasrp.org
Management of Barber Pole Worm in Sheep and Goats in the Southern U.S.
www.attra.org/downloads/goat_barber_pole.pdf
Maryland Small Ruminant Page
www.sheepandgoat.com
FAMACHA® Information
www.vet.utk.edu/departments/LACS/pdf/FAMACHA.pdf
www.scsrpc.org/SCSPRC/FAMACHA/famacha.htm
Langston University, Oklahoma:
- E. (Kika) de la Garza Institute for Goat Research
 www.luresext.edu/goats/index.htm
- Information about Internal & External Parasites of Goats, www.luresext.edu/goats/training/parasites.html

References

Managing Internal Parasites in Sheep and Goats
By Margo Hale
NCAT Agriculture Specialist
©NCAT 2006
Paul Driscoll, Editor
Karen Van Epen, Production
This publication is available on the Web at:
www.attra.ncat.org/attra-pub/parasitesheep.html
or
IP293
Slot 289
Version 100406