Key Components to Successful Flock Health

Dr. Hollie Schramm Production Management Medicine, VMRCVM Clinical Professor

Goals of a Flock Health Program

- Improve overall health and welfare (relationship with vet)
- Decrease losses
- Increase productivity
- Maximize profitability of the flock
- HOW can we measure this and be better?
 - Analysis of production, health, and financial RECORDS
 - Then SET GOALS for production parameters
 - Morbidity, mortality, culling, and growth rates

VETERINARY CLIENT PATIENT RELATIONSHIP

- The veterinarian takes responsibility for medical and treatment judgments for the animal(s) and the client agrees to follow the veterinarian's instructions
- The veterinarian has close knowledge of the animal(s) and their medical condition obtained by examination and premise visit
- The veterinarian is available for follow up visits or has emergency coverage in the event of adverse reactions or failure of the treatment regimen

Why is the VCPR important?

- Advice and guidance in the appropriate use of medications
- A better understanding and working knowledge of your animal management practices
- Improved medical judgments
- Assist with withdrawal time determination
- Producers are not approved to make extra-label drug usage decisions

EXTRA LABEL DRUG USE (ELDU)

- Defined as
 - Use of a drug in an animal in a manner that is not in accordance with the approved labeling
 - Includes but is not limited to
 - Use in different species
 - Use for indications (disease and other conditions)
 - Use at dosage levels, frequencies, duration or routes of administration other than those stated in the labeling
 - Deviation from labeled withdrawal times based on these different uses

X Label

Χ

Χ

STARTS WITH PREVENTATIVE Health Care!

- Biosecurity
- Vaccination program
- Good nutrition and feeding management
- Parasite control program
- Hoof care (Not covering)
- Predator management (Mr. Chad Fox)

Biosecurity Practices that are put in place in order to protect the health of your animals! ■ Bio-exclusion: Preventing disease entry ■ Bio-management: Reducing the risk of animal infection and disease ■ Bio-containment: Containing diseases that are on Applies to everyone and everything used on the farm Encompasses disease management, excellent husbandry, and routine health care What is your herds level of risk? -Closed flock ■ Lowest Risk -Animal from known low-risk status flocks, single contact -Borrowing or lending animals with low-risk flocks, multiple contacts with other flock(s) -Animal from farm of unknown-health status ■ Highest Risk -Animal from sales barns or in contact with accumulations of animals (shows) of unknown health status Design a Protocol Based on Your Flocks Level of Risk ■ What steps can be taken to reduce risks? • Quarantine new or returning animals for one month; deworm/test/vaccinate

■ Vaccinate new animals entering the herd; vaccination protocols

Have treatment records for each individual animalAnimals are managed and handled in a specific order

Design a Protocol Based on Your Flocks Level of Risk

- More steps to reduce risks
 - Mortality/Abortions submit for diagnostic testing/correct disposal
 - Use rams from herd with high health status/vaccinate
 - Prevent contact with wildlife (cats, dogs also)
 - Contain number of people on farm; protective boots; entry from other farms
 - Clean and disinfect equipment, boots, and hands

Vaccination

- Clostridial (depends on risk of certain diseases)
 - CD&T
 - 7-Way (not a fan!)
 - 8-Way

Group	Vaccination Timing (CD&T)			
Ewes	4-6 weeks before lambing			
Lambs	4-8 weeks of age			
	Booster 7-11 weeks of age			
Rams	4-6 weeks before lambing season 8-way: 4-6 weeks before breeding			

- Timing depends on:
 - Feeding regimen (at highest risk of CD during change in diet)
 - Age at weaning (creep feeding)
 - Unvaccinated/Unknown vaccination status (lambs 1-3 wks and booster)

Vaccinations

- Camphylobacter (Vibrio)/Chlamydia
 - Sharing rams with other farms
 - Control disease on farm with infection present
 - Vaccinate ewes one month before breeding season (Ewe lambs: 8 and 4 weeks before breeding season)
- Foot rot, CL, Rabies, Soremouth
 - Use to contain and decrease disease in the herd

Vaccination for Respiratory Disease (Pasteurella infection)

- Pneumonia is most often due to
 - Virus→Stress→Bacteria (Mannhemia aka Pasteurella)
- Primary viruses involved
 - PI-3*, Adenovirus, RSV (Respiratory Syncytial Virus)
- Bacteria Involved
 - Mannhemia hemolytica, Biberstenia trehalosia, Pasteurella multocida
 - Cattle vaccines are not efficacious for bacteria
- CURRENTLY NO APPROVED VACCINATIONS FOR SHEEP OR GOATS

Vaccination for Respiratory Disease

- Vaccination for viral components (controversial)
- Intranasal modified live cattle vaccines available
 - Use for PI-3 and RSV viral components (efficacy is not known)
 - $\,\blacksquare\,$ Serotypes for cattle and sheep may not match up
 - Use in high risk herds (show animals, high incidence of pneumonia)
 - Vaccinate dams 4-6 wks before parturition (same time CD&T)
 - In lambs at 1-3 days of age, decreases morbidity
- Can use in the face of an outbreak
- Best to use in small subset of animals in herd first

BODY CONDITION SCORING

Best way to Make Nutritional Decisions!

■ A tool for producers to increase production efficiency in their flocks

Body Condition Scores – Sheep/Goats The state of the sta

Body Condition Scoring

Review Nutrition at Each Exam

Group	Timing	Ideal BCS	Other Herd Health Events
Breeding Ewes	Pre-Breeding 3		BSE, famacha, palpate udders
	Midpregnancy 2.5-3		US and sort, famacha
	Pre-Lambing Lambing		CD-T, other vx, lambing management, famacha
	Weaning/Drying off	2+	famacha
Rams	Pre-Breeding	3-3.5	BSE, 8-way, famacha
	Summer	2+	famacha

^{*}Most cases of mastitis occur at weaning time

*

Research and BCS

Oregon State University

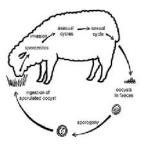
- Ewes with a body condition score of 3 to 4 at lambing lost fewer offspring and weaned more pounds of lamb than those with a condition score of 2.5 or less
- There was a 33% difference in total weight of lamb weaned (64 versus 85 pounds per ewe) between ewes with pre-lambing body condition scores of 2.5 to 3.5

Fat and Thin Ewes Reasons and Consequences

- Why are ewes too thin?
 - Inadequate nutrition, parasitism, inadequate bunk space, inadequate grouping of animals, wasting diseases, chronic diseases, genetics, high milk production (multiple lambs), old (need to be culled)
 - This sets them up for: failure to conceive, less lbs lamb weaned, pregnancy toxemia, parasitism and disease
- Why are ewes too fat?
 - Were not culled, poor milk production (low wean wt), overfed in early-midgestation, dominant ewes
 - This sets them up for: pregnancy toxemia, fatty liver, dystocia, vaginal prolapse

Nutrition for the Pregnant Ewe

- Do not overfeed dams in early or mid-gestation
- Dry matter intake: 3.5-4% body weight in late gestation (increases w/ # fetuses)
- Forage must be good quality
 - If poor quality will only be able to eat 2-3% bw
- Increase concentrate slowly (140 lb ewes)
- -6 weeks: 0.5-1 lbs
- -4 weeks: 1-1.5 lbs
- -2 weeks: 2-2.5 lbs


Gastro-intestinal parasites

#1 health problem affecting small ruminants

- Coccidia
- Round worms (aka Strongyles)
 - Haemonchus contortus Barber pole worm
 - Ostertagia (Teladorsagia)
 - Trichostrongyles
 - Cooperia
 - Oesophagostomum
- Lungworms
- Parelaphostrongylus tenuis Meningeal (deer) worm

Eimeria species

- Protozoan
- Oocysts must sporulate outside the host to be infective
- Likes warm and moist conditions
- Can survive at wide range of temps for years
- Barns and over-crowding
- Hay rings and waterers

Clinical Sign ■ Diarrhea (usually no blood) ■ Chronic wt loss (low BCS) ■ Straining (rectal prolapses) ■ Weakness ■ Rough hair coat ■ Anorexia ■ Dehydration ■ Mild anemia/hypoprotememia **Pathology** ■ Cause necrosis of the mucosal lining ■ Can take weeks for mucosa to heal and malabsorption can persist ■ Permanent scarring results in poor-doing lambs Diagnosis ■ Direct Smear , fecal float (bad) ■ BEST: McMasters or Modified-McMasters ■ 5,000 oocysts/gm (quantifies) ■ Chronic coccidia- shed organisms at low numbers

 Remember number of oocysts does not correlate with severity

of clinical disease (consumption does)

Treatment ■ Amprolium (Corid) ■ Best to treat individually (nursing lambs) ■ 50 mg/kg (5 times the calf dose) \blacksquare 2.25 mL/10 lbs orally 1x/day for 5 days ■ 5 mL/10 lbs orally 1x/day for 5 days (1:1 dilution) ■ Follow up with fecals ■ Herd/Group treatment in water ■ 4 ounces/10 gallons water ■ Follow up with fecals ■ Re-Treat in 3 weeks ■ 24 hr meat w/d ■ Block metabolism of B1 in protozoa EXTRALABEL USE!! ■ Thiamine: 0.25 mL/10 lbs 2-3x/day for 3-5 days Control ■ Sanitation!! ■ Need to be fed for 4 ■ COCCIDIOSTATS weeks (except corid) ■ Amprolium ■ Use only during times of ■ Crumbles: 15 mg/kg/day for 3 ■ Prolonged use of ■ Liquid: 2 ounces per 10 gallons coccidiostats can cause resistance, use fecals to ■ Deccox (decoquinate) monitor this ■ 0.5 mg/kg/day ■ Bovitech (lasolocid) ■ 15-70 mg/head/day Gastro-intestinal parasites #1 health problem affecting small ruminants ■ Coccidia ■ Round worms Haemonchus contortus Barber pole worm • Ostertagia (Teladorsagia)

Trichostrongyles
Cooperia
Oesophagostomum
Lungworms

(deer) worm

■ Parelaphostrongylus tenuis Meningeal

$\begin{tabular}{ll} The \ FAMACHA\end{tabular} System \\ For assessing anemia and barber pole worm infection in small ruminants \\ \end{tabular}$

Clinical Category	Color	PCV	Deworm?	
1	Red	≥ 28	No	7
2	Red-Pink	23-27	No	
3	Pink	18-22	?	7
4	Pink-White	13-17	Yes	
5	White	≤ 12	Yes	

Parasite Management Principles

- 1. Do not overstock pastures/pens
- 2. Don't overgraze (5" min)
- 3. Adequate nutrition increases immunity
- 4. Rest pastures sufficiently: Rule of thumb is 3 months
- 5. Practice selective deworming, not prophylactic deworming = "smart drenching"

Parasite Management Principles

- 6. Administer drugs properly (do not under dose)
- 7. Select sheep which are more resistant to internal parasites
- 8. Practice good sanitation
- 9. Use coccidiostats
- 10. Determine which drugs work on your farm (FECRT)

Fecal Egg Count Reduction Test FECRT

- Absolutely necessary test for every herd
- Determines if the current dewormer is working in your herd (quantitative test)
 - Take fecal sample before deworming
 - Multiple animals in the herd (minimum of 10)
 - McMaster's performed and # eggs/gm recorded
 - Individual animal test
 - Take fecal sample 10-14 days after deworming
 - Take fecal from same animals

FECRT

- Should see 80-90% decrease in the fecal egg count from first to second sample if dewormer is working
- If lower then this: Change Dewormer(s)
- Can also use on an individual animal basis to evaluate fecal egg counts (McMasters)
 - Can help determine animals to keep (positive selection) and animals to cull (negative selection)

Combination Dewormers

- All herds have resistance to all dewormers to some degree (unless closed herd for >25 yrs)
- Due to resistance to all dewormers, currently being used much more frequently
- Recommended for clinical sheep (anemic due to hemonchus)

New Developments

- New drug hopefully coming soon
- Monepantel
- Amino-acetyl-nitrile (new class)
- Currently in hands of FDA/Novartis product
- Drug released in 2005 (NZ, AU)
 - Already seeing resistance in these countries

New Developments

- Sericea-Lespedeza pellets available \$\$
- Tannins may react directly with adult worms by attaching to their "skin", causing them distress, or indirectly by improving protein nutrition of the goat and boosting the immune system
- Appear to reduce the hatching of fecal eggs and development of larvae, perhaps by binding to the larvae
- (Min et al., 2005).

A Little About Anthelmintics

Anthelmintics commonly used in the U.S. sheep and goat industry						
1	BZD	Benzimidazoles	Albendazole	TBZ®¹ Panacur®, Safeguard®² Valbazen®¹ Synanthic®		
2	IMID	Nicotinic agonists Imidazothiaoles Tetrahydropyrimi dines	Morantel Pyrantel	Prohibit®¹, Levasol¹, Tramisol®¹ Rumatel®², Nematel® Strongid®		
3	ML	Macrolytic Lactones Avermectins Milbemycins	Eprinomectin Doramectin	Ivomec®¹, Primectin™¹ Eprinex® Dectomax® Cydectin®¹, Quest®		
¹ FDA-approved for use in sheep. ² FDA-approved for use in goats.						

Questions?

- Great reference for parasite control and famacha
 - Southern Consortium of Small Ruminant Parasite Control
 - <u>www.scsrpc.org</u>
 - National Sustainable Agriculture Website
 - attra.ncat.org
- To attend FAMACHA course at VMRCVM
 - Email Dr. Hollie Schramm
 - hschramm@vt.edu

Τŀ	+	Λ	IK	\mathbf{Y}	$(\)$	[] [
	. 11	TT 4	177	_	\smile	\smile .

-		