Proceedings
2019
VIRGINIA
SHEPHERDS’ SYMPOSIUM

January 4 - 5, 2019
ALPHIN-STUART LIVESTOCK ARENA
BLACKSBURG, VIRGINIA
Table of Contents

2019 VA Shepherds’ Symposium
Presented By
Virginia Sheep Producers Association

Page Number

“Parasite Control Strategies- Where Do We Go From Here?”
Dr. Anne Zajac.. 1

“Minerals and Vitamins for Sheep”
Dr. Diedre Harmon .. 21

“Price Summary of the New Holland Livestock Market”
Tom Stanley ... 37

“Lambing Time Management and Obstetrics”
Dr. Hollie Schramm ... 43

“Tips for Making Sound Financial Decisions on the Farm”
Dr. Alex White.. 51

“Ration Balancing 101”
Dr. Scott Greiner.. 61
Sponsors

Augusta Cooperative Farm Bureau, Inc. – Shawna Bratton/Allison Bagley
1205B Richmond Road
Staunton, VA 24401
540-885-1265, Ext. 231
ABagley@augustacoop.com

Cargill – Jessica Lohman
6606 W. Broad Street
Richmond, VA 23230
540-336-1980
Jessica.Lohman@cargill.com

Farm Credit of the Virginias – Jenna Roeder
PO Box 1900
Romney, WV 26757
304-822-4173
jroeder@fcvirginias.com

Virginia Farm Bureau Federation – Tony Banks
PO Box 27552
Richmond, VA 23261
804-290-1150
tony.bank@vafb.org

Virginia Sheep Industry Board
c/o Matthew Sponaugle
261 Mt. Clinton Pike
Harrisonburg, VA 22802
540-383-7983
matthew.sponaugle@vdacs.virginia.gov

Virginia Sheep Producers Association
Dept of Animal & Poultry Sciences
Virginia Tech
Blacksburg, VA 24061
540-231-9159
sgreiner@vt.edu
PARASITE CONTROL STRATEGIES: WHERE DO WE GO FROM HERE?

Anne Zajac, DVM, PhD (azajac@vt.edu)
Member, American Consortium for Small Ruminant Parasite Control

What Are The Parasites?

- Gastrointestinal nematode worms (GIN) biggest disease problem in the eastern US in small ruminants
- Coccidia come second
- Meningeal worm (deer worm) a distant third in most cases
- MOST UP TO DATE INFORMATION: https://www.wormx.info/

Stomach and Intestinal Worms

- Most important — barber pole worm, Haemonchus contortus
 - Abomasal (stomach) parasite
 - Exploits many environments, management practices

Haemonchus contortus—Barber Pole Worm (wireworm)

- Worms about an inch long
- White reproductive tract wraps around red intestine — looks like barber pole
Stomach and Intestinal Worms

- **Haemonchus contortus**
 - Blood sucking parasite
 - Large numbers can cause anemia (pale mucous membranes), weakness and bottle jaw
 - Decreased gains, growth
 - No diarrhea

Parasites

- Barber pole worm doesn’t produce diarrhea but other related worms might
 - Usually not as important by themselves, can cause problems in some specific circumstances when management and/or environment allow build-up

Why Are GIN So Bad?

- Drug resistance a fact of life
- Only 3 different types of drugs used for GIN
 - Worms resistant to one member of a group resistant to all

<table>
<thead>
<tr>
<th>Benzimidazoles</th>
<th>Macrocyclic lactones</th>
<th>Nicotinics</th>
</tr>
</thead>
<tbody>
<tr>
<td>fenbendazole (Safeguard Panazur)</td>
<td>ivermectin (Ivomec etc.)</td>
<td>levamisol (Prohibit)</td>
</tr>
<tr>
<td>albendazole (Valbuzene)</td>
<td>moxidectin (Cydectin)</td>
<td>moxidane (Rumensel, Goat Care, Positive Pellet)</td>
</tr>
<tr>
<td>Others</td>
<td>epirvinemec (Spirulin)</td>
<td>pyrantel (Strongid, Banmith - horses)</td>
</tr>
<tr>
<td>oxibendazole (Anthelmintics)</td>
<td>doramectin (Dectomax)</td>
<td></td>
</tr>
</tbody>
</table>

Unless you test for resistance you can’t be sure your drugs are working

New drug with time → Drug looks like it’s working but losses occurring

By the time you realize resistance is present, most worms are resistant and not using the drug for awhile doesn’t make it effective again
My sheep
Closed flock for at least 20 years
Virtually no anthelmintic use
Barber pole Drenchrite results:
Benzimidazoles: Suspected resistance
Levamisole: Resistance
Ivermectin: Suspected resistance

Since we can't rely on drugs alone, we have to use integrated control programs combining multiple management techniques

Integrated Parasite Management Practices

- Babies get the best
- Rotation/sward height
- Stocking rate/time on pasture
- Alternate or mixed grazing
- “Deworming” plants
- Reducing parasite numbers

Dewormer Use

- Use the correct dose—see dewormer charts
 - Sheep and goats metabolize drugs differently
 - Effective dose in goats is two times the sheep dose except:
 - Levamisole (1.5 times)
 - Goat dose listed on the Safeguard® label too low
- Observe withdrawal times

Really not separate lists because change in one affects the other
Dewormers Use--Combinations

- May see recommendations for increasing dose or multiple treatments to improve drug efficacy—when resistance first becoming a problem these often worked
- Now you can't be confident about effect without testing
- Probably better to go with combination treatment
 - Treat at the same time with 2 or 3 drugs from different drug groups
 - Additive effect of treatments

Combination treatments

- Full dose of 2 or 3 drugs from different groups
- Do not mix drugs—administer separately, one right after the other in separate syringes
- Observe longest withdrawal of products used
- Combination products are routine in other countries, but not approved and marketed here
- Use in a targeted selective treatment program—
 - See attached file

Targeted Selective Treatment

- Deworm only the animals that need it
- In most circumstances the majority of animals may not need deworming because of low parasite challenge or effective immunity
- Benefits
 - Use less dewormer
 - Slows rate of development of resistance to dewormers

Targeted Selective Treatment

- For routine selective deworming, FAMACHA® best for small ruminants in most of US
 - Direct assessment of effects of parasite
 - Every sheep and goat producer should have a card!
 - Also useful in selection decisions
- Don't forget supportive care for the white eyes!
 - Take off infected pasture
 - Good food
 - Reduce risk of reinfection
Targeted Selective Treatment

- FAMACHA® training
- Requirement for hands on training
 - Difficult for some producers
- Tell your friends—option for on-line training
 - University of Rhode Island

At Last—Something New!

- Reducing the number of larvae on pasture
- New product expected to become available this year (really!)
- Duddingtonia flagrans—fungus that feeds on nematodes
 - https://www.wormx.info/single-post/2018/02/06/Video-Duddingtonia-flagrans

Duddingtonia flagrans

- Fungus found throughout the world
- Fungal spores fed to animals, pass through manure
- Environmental conditions cause spores to “hatch”, fungus forms net that traps and consumes nematode parasite larvae
 - Not coccidia or other parasites
- Known for many years that can reduce numbers of parasites on pasture
- Commercializing fungus was the slow step

Duddingtonia flagrans

- Australian company has created commercial products starting shipment to US this spring
- Approved in almost all states (including VA)
- BioWorma® will be sold for mixing with feed—not to individual producers, through veterinarians
- Livamol® with BioWorma® can be sold to individual producers
Duddingtonia flagrans

- Is this the replacement for dewormers that don’t work?
- NO—by itself it isn’t the answer but we hope it will be a really useful part of integrated parasite control
- **Downsides**
 - Doesn’t get rid of all the parasites
 - Some years may be more effective than others
 - Good year for parasites vs bad year for example
 - Will be probably be pretty pricey
- Challenge is to establish how to use it most effectively and economically
- Do do that must know something about parasite biology

Life as a Worm

- All Haemonchus family have same life cycle
 - Eggs passed in manure
 - Eggs develop, larva hatches
 - Larva develops to infective stage
 - Takes about 5-7 days minimum
 - The cooler it is, the longer it takes
 - Larvae move onto forage
 - Sheep, goats infected when grazing
 - Adults start egg laying in about 3 weeks
- ALL GRAZING ANIMALS HAVE WORMS
 - Generally these worms do not survive well in housing

Other useful information

- How long can the infective larvae last on pasture?
 - Once metabolic reserves used up, they die
 - Hotter it is, the faster they wiggle, the quicker they die
 - In cool, moist conditions they live for months

Can larvae in the environment survive winter weather?

- Eggs and larvae of some species survive winter weather better than others
 - Barber pole worm does not like freezing weather, most eggs and larvae die
- But there is another strategy for surviving winter
 - Larvae ingested in the fall enter stomach wall and become dormant (hypobiosis)
 - Wait to become adults till spring
 - While hypobiotic—No disease, no eggs in manure
GIN Fecal Egg Counts (FEC) and Pasture L3 Patterns important, not numbers

A - residual larvae from fall, too cold for much development
B - residual larvae mostly gone, but new larvae developing from spring bump in FEC. Egg to L3 goes faster with warmer temps
C - rapid increase in pasture larvae as young animals become infected from spring
D - new eggs on pasture develop more slowly as temperatures cool, L3 begin to fall
E - fecal egg counts low—larvae arrested, little new infection
F - resumption of development of arrested larvae produces "spring rise" in FEC
G - FEC dips because not enough larvae yet to replace worms as they age and die, then more new wave of L3 increases infections
H - decline as more incoming larval becomes arrested and eggs don't develop quickly or at all as temperatures cool

So When Is the Best Time to Use Fungus

- Research will be done in next few years to establish best practices for use in different regions
- For now, try to be strategic

How Many Worms Are In This Sheep?

- Adequate nutrition
- Good health
- Housing appropriate
- Adequate shelter
- Genetic Susceptibility

Inherent variation in susceptibility to parasite selection means that some animals will always have fewer parasites (all other things being equal). This resistance to infection can be selected for.
How Can You Select for Resistance?

- **By Breed**
 - Hair sheep
 - Goats?
- **Increase resistance by crossbreeding**
- **Can also select within breed**

Selecting Resistant Animals

- **FAMACHA®**
 - Allows culling of animals needing more deworming
 - Hard to separate resistance and resilience in deciding which animals to keep
- **Fecal egg counts**
 - Number of eggs in feces directly related to number of barber pole worms
 - Most common measure of resistance
- **Combining FAMACHA and fecal egg counts** would provide even more information
- **Genetic markers? Not yet**

Selection for Immunity

- **Include selection for resistance**
- **Use FECs and FAMACHA**
- **Know about resistance in animals you are buying**
 - Ask breeders for information
 - Ram test with parasite evaluation
- **Use Estimated Breeding Values in selection decisions—NSIP**
- **Everyone should be considering resistance to parasites in making decisions about breeding and replacements**

Copper Oxide Wire Particles

- **Like a moderately effective dewormer**
- **Copper oxide wire particles have specific effect on Haemonchus**
- **Other forms of copper not effective**
- **Can buy 2g boluses as copper supplement for goats**
- **Dose for Haemonchus control lower—may need to repackage**
- **Don't use too often, be mindful of copper toxicity in sheep**
- **One study indicated efficacy of a dewormer can be boosted when used with bolus**
- **READ more before using, talk to vet**
- **See attachment**

Do not administer to Lambs or Kids at unknown copper status or those supplemented with other sources of copper. Veterinary advice should be sought before treating breeds of sheep known to be copper sensitive.
Resistance to dewormers is a fact of life, and the situation has worsened greatly in recent years. Surveys indicate that most farms have worms resistant to at least two of the three major groups of dewormers. Many have resistance to all three groups, and some farms now have resistance to all available dewormers. But, having worms in your animals that are resistant to dewormers does not mean that all the worms are resistant. For instance, when all the commonly used dewormers were first introduced, their efficacy was >99%. Once efficacy falls below 95%, it indicates that drug resistance is present. At 95% the drug is still very useful, but once drug resistance is present, it usually worsens over time as more and more doses of that drug are given.

As the effectiveness of the dewormer decreases, it provides less and less benefit, and once it falls to <50%, it is no longer useful as a sole treatment. Given this situation, what is the best approach for using dewormers? Contrary to popular belief, rotating between dewormers will not prevent resistance from worsening, and is no longer recommended. Rather, dewormers should be used together at the same time in combination.

How and why do combination treatments work?

Research done in New Zealand has convincingly shown that the best approach is to use several different dewormers all at one time as a combination treatment. In fact, in Australia and New Zealand, there currently are few dewormer products sold as single drugs; most products contain 3, 4, or 5 different groups of dewormers (note: other counties have some dewormers that are not available in the US).

There are 2 major benefits to using drugs in combination:

1) You get an additive effect with each drug used, thus the efficacy of the treatment increases with each additional drug given (see Table 1 below); and

2) By achieving a higher efficacy, there are fewer resistant worms that survive the treatment, thus there is a greater dilution of resistant worms by the susceptible portion of the population (see Table 2).
Furthermore, as seen in Table 2, the sooner you start using a combination, the better off you will be, since you see the greatest difference in the percent of resistant survivors when efficacy of dewormers is high. The more dewormers that are used in combination, the greater the efficacy of treatment will be. However, if all the dewormers individually have poor efficacy, the combination will not reach high efficacy. As seen in Table 1, once efficacy falls to 50%, even a combination of 3 dewormers will still fail to reach a 90% efficacy.

As an illustration of why combinations help reduce the development of resistance, but rotation of dewormers does not, let us look at some numbers. If two drugs each with 90% efficacy are used in rotation, then each time animals are treated 10% of the worms survive (the resistant ones). In contrast, if these same two drugs are used in combination at the same time, then the efficacy increases to 99%. This calculation involves a simple additive function; the first drug kills 90%, and the second drug kills 90% of the remaining 10% [90% + (90% x 10%) = 99%]. Thus the efficacy achieved is now 10X greater and this then yields 10X fewer resistant survivors.

Because fewer resistant worms survive at each treatment, there is a greater dilution of the resistant worms among the majority of worms in refugia that are still susceptible. This then will greatly slow the development of drug resistance in the overall worm population. In contrast, if using a rotation of drugs, you would get 10X as many resistant worms surviving each time you treat. Additionally, given the high rates of drug resistance that are known to exist, it is likely that one or more of the dewormers will have poor efficacy, thus you risk rotating from an effective (or relatively effective) dewormer to an ineffective dewormer. By using dewormers as a combination, you eliminate the risk of rotating to a poorly effective drug, and get an additive benefit that maximizes the effectiveness of each treatment given.

Research shows that combinations are the best approach
But – it gets even better. Dr. Dave Leathwick (AgResearch, New Zealand) published a paper in 2015 in the Journal International Journal for Parasitology: Drugs and Drug Resistance, where seven farms previously diagnosed with resistance to at least two groups of dewormers were enrolled in a study where each farm implemented a tailored program of "best practice parasite management." The aim was to ascertain whether the programs, which included the almost exclusive use of combination dewormers, were able to prevent resistance from developing further. Strategies implemented on each farm varied, but had consistent underlying principles to avoid over-use of dewormers, manage refugia (and to ensure that only effective anthelmintics were used, by administering them only as a combination).

After five years, they demonstrated an overall improvement in the efficacy of the dewormers (when tested individually), indicating that the use of dewormers in combination, when applied with other best practices designed to reduce use of dewormers and maintain refugia, caused a reversion back toward susceptibility. So, there now is very strong evidence that using combination treatment is the best method for using dewormers and should be instituted on all farms immediately.

Precautions and issues to consider
Finally, before using this approach there are a few precautions to be aware of.

1) In New Zealand and Australia, products are sold that contain a combination of dewormers, so only one product needs to be administered. In contrast, in the USA, no dewormers are yet sold in this formulation, so the dewormers need to be bought and administered separately. This increases the cost as compared to the products available in these other countries. Additionally, the different groups of dewormers are not chemically compatible, thus they cannot be mixed together in the same syringe. Rather, they need to be administered separately, but can be given one immediately after the other.

1) All dewormers should be administered at the full recommended dose whether administered singly or in combination.
2) When using dewormers in combination, meat and milk withdrawal times will be equal to the dewormer used with the longest withdrawal time period.

3) If using dewormers in combination, it is critical to maintain refugia; thus, one should be using a selective treatment approach based on FAMACHA© (see FAMACHA© section of the ACSRPC website for more information on this method and for further explanations of refugia). The presence of refugia is essential to realize the full benefits from combinations. In fact, if refugia are not maintained then you will not get the necessary dilution of the resistant survivors, and this will then lead to having multiple-resistant worms that can no longer be controlled with the combination treatment.

4) If the efficacy of your dewormers are >80%, it is possible you may not notice any difference in the clinical response of treatments when applied singly vs. in combination. However, the impact on the further development of resistance could be quite large (see Table 2).

5) Any safety precautions that exist for a single dewormer will also exist when used in a combination; however, there are no known additional risks with using more than one dewormer at the same time.

Table 1: Impact of using dewormers in combination on the efficacy of treatments.

<table>
<thead>
<tr>
<th>Drug 1 (%)</th>
<th>Drug 2 (%)</th>
<th>Drug 3 (%)</th>
<th>Combination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>80</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>95</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>99</td>
<td>99.99</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>95</td>
<td>99.2</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>87.5</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>78.4</td>
</tr>
</tbody>
</table>

The increases in efficacy are due to a simple additive effect as per the equation below: Where D1 = efficacy of dewormer 1, D2 = efficacy of dewormer 2, D3 = efficacy of dewormer 3, C2 = efficacy of D1+D2, and C3 = efficacy of D1+D2+D3

\[
C2\% = D1\% + (100-D1\%)*D2\% \\
C3\% = C2\% + (100-C2\%)*D3\%
\]

Table 2: Impact of combinations on percent of resistant worms that survive.

Table shows the % of worms killed by a single dewormer vs a combination treatment with two dewormers both with the same efficacy, ranging from 80% to 99%. The last column shows the magnitude of the difference between % of worms killed and % surviving when one or two dewormers in combination are used. Note that the higher the efficacy of the drugs, the smaller the difference in efficacy when used in combination, but the greater the difference in the % of resistant survivors.

<table>
<thead>
<tr>
<th>Efficacy of Dewormer</th>
<th>Single Dewormer % Killed</th>
<th>2 Dewormers in Combination % Killed</th>
<th>Fold Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>99</td>
<td>99.99</td>
<td>1.01x</td>
</tr>
<tr>
<td>% Surviving</td>
<td>1</td>
<td>0.01</td>
<td>100x</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
<td>99.96</td>
<td>1.02x</td>
</tr>
<tr>
<td>% Surviving</td>
<td>2</td>
<td>0.04</td>
<td>50x</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
<td>99.75</td>
<td>1.05x</td>
</tr>
<tr>
<td>% Surviving</td>
<td>5</td>
<td>0.25</td>
<td>20x</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>99</td>
<td>1.1x</td>
</tr>
<tr>
<td>% Surviving</td>
<td>10</td>
<td>1</td>
<td>10x</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>96</td>
<td>1.2x</td>
</tr>
<tr>
<td>% Surviving</td>
<td>20</td>
<td>4</td>
<td>5x</td>
</tr>
</tbody>
</table>

Timely Topics were written by members of the American Consortium for Small Ruminant Parasite Control. They are for educational and informational purposes only. They are not meant as a substitute for professional advice from a veterinarian or other animal science professionals. Some treatments described in the articles may require extra label drug use, which requires a valid veterinarian-client-patient relationship.
INTRODUCTION

Internal parasites pose a difficult challenge for many sheep and goat producers. Parasites are numerous and adaptable. Some traditional control methods may fail due to parasites having developed resistance to anthelmintics (dewormers). Organic producers usually face even greater difficulties because they are more limited in their control options.

A multi-pronged approach to managing internal parasites is now recommended. This approach includes attention to nutrition, good pasture management, animal selection, and good sanitation. But even with these important measures, some animals will still need treatment.

One treatment that may be effective is copper oxide wire particles (COWP). These tiny metal particles are a slow release form of copper that can be administered in a gel cap. The following provides information about incorporating COWP into a parasite management plan.

GETTING STARTED

- Research indicates that COWP (alone) are only effective against the adult barber pole worm, Haemonchus contortus.
- A good way to screen for H. contortus levels is to use the FAMACHA© method of assessing anemia.
- As with dewormers, COWP should only be administered to animals that need treatment, as determined by the FAMACHA© system and/or Five Point Check©.
- Some organic certifiers may allow the use of COWP for management of the barber pole worm.

HOW TO USE

- Find a source of COWP. They are sold as copper supplements for cattle (12.5 and 25 g boluses) and goats (2 and 4 g boluses; g = gram) that are consuming copper-deficient diets.
- Repackage COWP, as necessary, to achieve the desired dose.
- Purchasing cattle boluses and repackaging them into small gelatin capsules will save money. You can weigh the wire particles or fill the capsule to the appropriate level by “eye-balling” it (i.e. half the 2 g for a 1 g dose).
- Gel caps can be purchased from a pharmacy or the web. If you will be using a calf balling gun, a #12 capsule fits, though it is much bigger than needed for the dose. A small bolus will work with pet balling/pilling guns.
DOSAGE

- To prevent possible copper toxicity, especially in sheep, the lowest possible dose of COWP should be used.
- Doses that have proven effective are 0.5 to 1.0 g per lamb or kid and 1 to 2 g per ewe or doe. Dosage is based on age not weight.
- The 2 g goat boluses are okay for adults, but too much for young animals. The 4 g boluses are too much for deworming purposes.

ADMINISTERING COWP CAN BE TRICKY

- Never put your fingers in the animal’s mouth. The molars are strong and can administer a very painful bite.
- Use the appropriate size balling gun for the size of capsule you are using. This will lessen the problem of boluses falling out before you have dosed them. A bit of peanut butter will help to keep the bolus in place until dosing.
- Because of those strong molars, plan to have extra balling guns. If an animal clamps down hard enough, it may destroy the plastic gun.
- You may also improvise a balling gun using a very small PVC pipe, combined with a small wooden dowel and a rubber band.
- Remember to be gentle. Try to be patient. You will grow more proficient with practice, but expect your first efforts with COWP boluses to be awkward and frustrating. If you lose patience and use too much force, you may injure the animal.

FREQUENCY

- You can administer COWP again after 4 to 6 weeks, if an animal needs treatment.
- You can treat several times; however, it is not known if copper will accumulate to dangerous levels if this is done in several consecutive years. According to research, it is relatively safe to do this for market animals at the 1 g dose (Burke and Miller, 2006).
WHAT RESULTS CAN I EXPECT?

- Deworming effects are rapid (within 7 days), but short-lived, because only the adult worm is killed by COWP.
- Fecal egg counts may climb again after 3 to 4 weeks, even sooner if animals are carrying a large load of immature larvae (Vatta et al., 2012). Use the FAMACHA® system to monitor.
- When COWP were combined with albendazole (Valbazen®) or levamisole (Prohibit®), worm control was more effective, as there was a reduction in both immature and adult barber pole worms and intestinal worms, even in a population of resistant worms (Burke et al., 2016).
- Similar results can be expected from the different commercial sources of COWP: Copasure® (Animax Ltd), Ultra-Cruz® (Santa Cruz Animal Health) or Pharmplex (Australia) (Burke et al., 2016).
- While there is scientific evidence that COWP reduce barber pole worm infection in sheep and goats, effectiveness is impacted by factors such as the ratio of barber pole worms to other parasite species and digestive function or gut pH (diarrhea may reduce effectiveness). (Burke, 2018).

PRECAUTIONS

- Copper may accumulate to unsafe levels in the liver, especially in sheep. It is important to know the copper status of your animals. Liver samples of animals that die or are harvested for meat can be analyzed for copper levels. This information can be used to see if COWP can be used safely in your flock or herd.
- Once you start using COWP for worm control, you should periodically check livers to see if copper levels are still at safe levels (20-100 mg/kg wet for sheep, 20-150 mg/kg wet for goats). (Puls, 1988).
- While checking livers is the best way to determine the copper status of your animals, it is also important to know all the dietary sources of copper. You can check soil, water, and feedstuffs to determine the amount of copper and other minerals your animals are consuming and the risk of copper toxicity. The levels of molybdenum and sulfur are also important as they affect the absorption of copper.
- The maximum tolerable copper concentration for sheep is 15 mg/kg (ppm) dry matter when diets contain normal molybdenum (1-2 mg/kg DM) and sulfur (0.15-0.25 percent) (NRC, 2007). The ratio of copper to molybdenum should be 10:1 or less to prevent copper toxicity. The maximum tolerable copper level for goats has not been established (NRC, 2007). Until further research has been done, it is recommended that the cattle level (40 mg/kg) be used. (NRC, 2007).

WHAT IS COPPER TOXICITY?

When copper exceeds safe levels, it accumulates in the liver. Sulfur and molybdenum in the diet impact the amount of copper that is safe. Sheep are known to accumulate copper more than other animals. In simplistic terms, when the liver is “full”, and more copper is ingested, the excess copper can “spill” into the bloodstream, causing death of red blood cells, thus resulting in anemia, weakness, and death. The urine may appear red, tissues may appear yellow. Treatment is difficult and if one animal is suffering from copper toxicity, it is likely that others in the herd or flock will soon follow.

FOR MORE INFORMATION

For more detailed information on using COWP, go to www.wormx.info. Select Copper Oxide Wire Particles from the Topics drop-down menu.
Literature Cited

Fact sheets in the Best Management Practices for Internal Parasite Control in Small Ruminants series were written and reviewed by members of the American Consortium for Small Ruminant Parasite Control. They are for educational and informational purposes only. No practice described in the fact sheets stands alone as a method to control internal parasites. Each producer needs to implement the appropriate combination of practices that will achieve satisfactory control of internal parasites in their flock or herd. The fact sheets are not meant as a substitute for professional advice from a veterinarian or other animal science professionals. Some treatments described in the fact sheets may require extra label drug use, which requires a valid veterinarian-client-patient relationship. For a complete list of fact sheets, go to https://www.wormx.info/bmps.

Author:

Linda Coffey, M.S.
NCAT-ATTRA, Fayetteville, Arkansas

Reviewers:

Joan Burke, Ph.D.
USDA ARS, Dale Bumpers Small Farms Research Center, Booneville, Arkansas

Adriano Vatta, BVSc
Zoetis, Kalamazoo, Michigan

Jim Miller, DVM
Louisiana State University, Baton Rouge, Louisiana

Susan Schoenian, M.S.
University of Maryland Extension, Keedysville, Maryland

Niki Whitley, Ph.D.
Fort Valley State University, Fort Valley, Georgia
Sheep Dewormer Chart

Important --Please read notes below before using this chart

<table>
<thead>
<tr>
<th>Weight Pounds (lbs)</th>
<th>Valbenzen (albendazole) ORALLY</th>
<th>Safe-Guard (fenbendazole) ORALLY</th>
<th>Ivomec Sheep Drench (ivermectin) ORALLY</th>
<th>Prohibit (levamisole) ORALLY</th>
<th>Cydecin Sheep Drench (moxidectin) ORALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ml = 1cc</td>
<td>7.5 mg/kg 0.75 ml/ 25 lb</td>
<td>5 mg/kg 0.6 ml/ 25 lb</td>
<td>0.2 mg/kg 2.9 ml/ 25 lb</td>
<td>8 mg/kg 2 ml/ 25 lb</td>
<td>0.2 mg/kg 2.3 ml/25 lb</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.5</td>
<td>2.3</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.6</td>
<td>2.9</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>30</td>
<td>0.9</td>
<td>0.7</td>
<td>3.4</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>35</td>
<td>1.1</td>
<td>0.8</td>
<td>4.0</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>40</td>
<td>1.2</td>
<td>0.9</td>
<td>4.5</td>
<td>2.9</td>
<td>3.6</td>
</tr>
<tr>
<td>45</td>
<td>1.4</td>
<td>1.0</td>
<td>5.1</td>
<td>3.3</td>
<td>4.1</td>
</tr>
<tr>
<td>50</td>
<td>1.5</td>
<td>1.1</td>
<td>5.7</td>
<td>3.7</td>
<td>4.5</td>
</tr>
<tr>
<td>55</td>
<td>1.7</td>
<td>1.3</td>
<td>6.2</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>60</td>
<td>1.8</td>
<td>1.4</td>
<td>6.8</td>
<td>4.4</td>
<td>5.4</td>
</tr>
<tr>
<td>65</td>
<td>2.0</td>
<td>1.5</td>
<td>7.4</td>
<td>4.7</td>
<td>5.9</td>
</tr>
<tr>
<td>70</td>
<td>2.1</td>
<td>1.6</td>
<td>8.0</td>
<td>5.1</td>
<td>6.3</td>
</tr>
<tr>
<td>75</td>
<td>2.3</td>
<td>1.7</td>
<td>8.5</td>
<td>5.5</td>
<td>6.8</td>
</tr>
<tr>
<td>80</td>
<td>2.4</td>
<td>1.8</td>
<td>9.1</td>
<td>5.8</td>
<td>7.2</td>
</tr>
<tr>
<td>85</td>
<td>2.6</td>
<td>1.9</td>
<td>9.7</td>
<td>6.2</td>
<td>7.7</td>
</tr>
<tr>
<td>90</td>
<td>2.7</td>
<td>2.0</td>
<td>10.2</td>
<td>6.6</td>
<td>8.1</td>
</tr>
<tr>
<td>95</td>
<td>2.9</td>
<td>2.1</td>
<td>10.8</td>
<td>6.9</td>
<td>8.6</td>
</tr>
<tr>
<td>100</td>
<td>3.0</td>
<td>2.2</td>
<td>11.4</td>
<td>7.3</td>
<td>9.1</td>
</tr>
<tr>
<td>105</td>
<td>3.2</td>
<td>2.3</td>
<td>1.02</td>
<td>7.7</td>
<td>9.5</td>
</tr>
<tr>
<td>110</td>
<td>3.3</td>
<td>2.5</td>
<td>12.5</td>
<td>8.0</td>
<td>10</td>
</tr>
<tr>
<td>115</td>
<td>3.5</td>
<td>2.6</td>
<td>13.1</td>
<td>8.4</td>
<td>10.5</td>
</tr>
<tr>
<td>120</td>
<td>3.6</td>
<td>2.7</td>
<td>13.7</td>
<td>8.8</td>
<td>10.9</td>
</tr>
<tr>
<td>125</td>
<td>3.8</td>
<td>2.8</td>
<td>14.2</td>
<td>9.1</td>
<td>11.4</td>
</tr>
<tr>
<td>130</td>
<td>3.9</td>
<td>2.9</td>
<td>14.8</td>
<td>9.5</td>
<td>11.8</td>
</tr>
<tr>
<td>140</td>
<td>4.2</td>
<td>3.0</td>
<td>15.4</td>
<td>10.2</td>
<td>12.7</td>
</tr>
<tr>
<td>150</td>
<td>4.5</td>
<td>3.1</td>
<td>16.0</td>
<td>11.0</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Valbenzen Suspension (11.36% or 113.6 mg/ml): 7.5 mg/kg orally; approved in sheep with meat withdrawal time of 7 days. Do NOT use in pregnant ewes in the first trimester of pregnancy.

Safe-Guard/ Panacur Suspension (10% or 100 mg/ml): Note that SafeGard is not approved for use in sheep. Sheep dose is 5 mg/kg orally; meat withdrawal time of 6 days.

Ivomec Drench for Sheep (0.08% or 0.8 mg/ml): 0.2 mg/kg orally; approved in sheep with meat withdrawal time of 11 days. Protect from light.

Prohibit Soluble Drench Powder (Sheep): (Note that this drug is also sold as Levasol and Trasmol) 8 mg/kg ORAL dose. Approved for use in sheep with meat withdrawal of 3 days. Solution prepared by dissolving a 52 gram packet in 1 quart (943 ml) of water. This yields a solution with 49.6 mg/ml. Always make sure to follow directions on packet when preparing.

If dosing lambs, it is safer to dilute further (1 packet in 2 quarts of water), and then administer twice the amount listed on the chart. The larger volume administered will provide a wider margin for safety if there are small errors in dosing.

Cydecin Sheep drench (1 mg/ml): 0.2 mg/kg orally; approved in sheep with meat withdrawal time of 14 days.
NOTE for Guideline for Dewormer (Anthelmintic) Dosages in Sheep

This chart was developed by Ray M. Kaplan, DVM, PhD and Lisa Williamson, DVM, MS (University of Georgia). It is provided as a possible guideline for anthelmintic (deworming) dosages for sheep. Producers should always consult their veterinarian for advice on their specific management situation for determining which dewormer(s) are best to use in their flock, and the proper dosages for their flock. Meat withdrawal times should always be strictly adhered to.

Note that drug resistance in parasites of sheep is extremely common. The effectiveness of a particular dewormer should always be tested before being used by performing either a Fecal Egg Count Reduction Test (FECRT) or DrenchRite larval development assay (contact Dr. Kaplan’s laboratory [706-542-0742] for more information about the DrenchRite test).

Updated September 2014
Dewormer Chart for Goats

Important --Please read notes below before using this chart

<table>
<thead>
<tr>
<th>Weight (Pounds)</th>
<th>1 ml = 1cc</th>
<th>Valbazen (albendazole) ORALLY</th>
<th>SafeGuard (fenbendazole) ORALLY</th>
<th>Ivomec Sheep Drench (ivermectin) ORALLY</th>
<th>Prohibit (levamisole) ORALLY</th>
<th>Cydectin Sheep Drench (moxidectin) ORALLY</th>
<th>Rumatol (morantel) Feed Pre-mix ORALLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 mg/kg 2 ml/ 25 lb</td>
<td>10 mg/kg 1.1 ml/ 25 lb</td>
<td>0.4 mg/kg 6 ml/ 25 lb</td>
<td>12 mg/kg 2.7 ml/ 25 lb</td>
<td>0.4 mg/kg 4.5 ml/25 lb</td>
<td>10 mg/kg 45 gm/100 lb BW (Durvet)</td>
<td>11 grams</td>
</tr>
<tr>
<td>25</td>
<td>1.6</td>
<td>0.9</td>
<td>4.8</td>
<td>2.2</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.4</td>
<td>1.4</td>
<td>7.2</td>
<td>3.3</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2.8</td>
<td>1.6</td>
<td>8.4</td>
<td>3.8</td>
<td>6.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.2</td>
<td>1.8</td>
<td>9.6</td>
<td>4.4</td>
<td>7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3.6</td>
<td>2.1</td>
<td>10.8</td>
<td>4.9</td>
<td>8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
<td>2.3</td>
<td>12.0</td>
<td>5.5</td>
<td>9.0</td>
<td>23 grams</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4.4</td>
<td>2.5</td>
<td>13.2</td>
<td>6.0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.8</td>
<td>2.7</td>
<td>14.4</td>
<td>6.6</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>5.2</td>
<td>3.0</td>
<td>15.6</td>
<td>7.1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5.6</td>
<td>3.2</td>
<td>16.8</td>
<td>7.7</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>6.0</td>
<td>3.4</td>
<td>18.0</td>
<td>8.2</td>
<td>13.6</td>
<td>34 grams</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6.4</td>
<td>3.6</td>
<td>19.2</td>
<td>8.8</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>6.8</td>
<td>3.9</td>
<td>20.4</td>
<td>9.3</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>7.2</td>
<td>4.1</td>
<td>21.6</td>
<td>9.9</td>
<td>16.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7.6</td>
<td>4.3</td>
<td>22.8</td>
<td>10.4</td>
<td>17.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>8.0</td>
<td>4.6</td>
<td>24.0</td>
<td>11.0</td>
<td>18</td>
<td>45 grams</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>8.4</td>
<td>4.8</td>
<td>25.2</td>
<td>11.5</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>8.8</td>
<td>5.0</td>
<td>26.4</td>
<td>12.1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>9.2</td>
<td>5.2</td>
<td>27.6</td>
<td>12.6</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>9.6</td>
<td>5.5</td>
<td>28.8</td>
<td>13.2</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>10.0</td>
<td>5.7</td>
<td>30.0</td>
<td>13.7</td>
<td>22.7</td>
<td>56 grams</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>10.4</td>
<td>5.9</td>
<td>31.2</td>
<td>14.3</td>
<td>23.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>11.2</td>
<td>6.4</td>
<td>33.6</td>
<td>15.4</td>
<td>25.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>12.0</td>
<td>6.8</td>
<td>36.0</td>
<td>16.5</td>
<td>27.3</td>
<td>68 grams</td>
<td></td>
</tr>
</tbody>
</table>

Valbazen Suspension (11.36 % or 113.6 mg/ml): 20 mg/kg orally; withdrawal time is 9 days for meat and 7 days for milk Do NOT use in pregnant does in the first trimester of pregnancy

Safe-Guard/ Panacur Suspension (10% or 100 mg/ml): the label dose in goats is 5 mg/kg, but a 10 mg/kg dosage is recommended. At 10 mg/kg, withdrawal time is 16 days meat and 4 days for milk. Add 1 day for each additional day the drug is used (e.g. if administered 2 days in a row then withhold milk for 5 days after 2nd dose).

Ivomec Sheep Drench (0.08% or 0.8 mg/ml): 0.4 mg/kg orally; meat withdrawal time is 14 days and milk withdrawal is 9 days.

Prohibit Soluble Drench Powder (Sheep): (Note that this drug is also sold as Levasol and Tramsiol) 12 mg/kg oral dose with meat withdrawal of 4 days and milk withdrawal of 3 days. Solution prepared by dissolving a 52 gram packet in 1 quart (943 ml) of water. This yields a solution with 49.6 mg/ml. If dosing kids, it is safer to dilute further (1 packet in 2 quarts of water), and then administer twice the amount listed on the chart. The larger volume administered will then provide a wider margin for safety if there are small errors in dosing.
Cydectin Sheep drench (1 mg/ml): use orally at 0.4 mg/kg orally; for a single dose the meat withdrawal time is 17 days and milk withdrawal is 8 days. Note that these withdrawal times are only applicable for the sheep oral drench at the dose given here. Higher doses will require a longer withdrawal time.

Moranthal tartrate (Rumatek) recommended label dose for goats is 10 mg/kg, orally. There is 0 (zero) withdrawal time for milk in lactating cattle and dairy goats. Meat withdrawal time for goats is 30 days. Because of the large differences in moranthal concentration among the various products, it is important to carefully read the label and make sure you are dosing correctly. The dosage on the chart above is for Durvet Rumatek. (With Durvet Rumatek, feed 0.1 lb (45 grams) per 100 lbs. BW; and with Manna Pro feed 1.0 lb per 100 lb. BW). There is also a highly concentrated form called Rumatek 88, but this is meant for mixing into large volumes of feed (feed 0.1 lb (45 gram) per 2000 lb BW). Note that the 10 mg/kg dose used for the chart is the label dose; administering 1.5 – 2X this dose may improve efficacy. If an elevated dose is used then withdrawal times would need to be extended.

NOTE on Guideline for Anthelmintic Dosages in Goats
The attached chart was developed by Ray M. Kaplan, DVM, PhD, DACVM, DEVPC (University of Georgia) with subsequent contributions by Patty Scharko DVM, MPH (Clemson University). It is provided as a possible guideline for anthelmintic (deworming) dosages for goats. Producers should always consult their veterinarian for advice on their specific management situation, for determining which of the dewormers remain effective on the farm, and for determining the most appropriate dosages for their herd. Meat and milk withdrawal times listed in this document are based on the most current information available from FARAD as of it’s writing. Be aware that these recommended withdrawal times may change over time as new pharmacologic information is obtained.

With the exception of fenbendazole administered at the 5 mg/kg dose, these drugs are not approved by the Food and Drug Administration (FDA) for use in goats, and when used in goats are considered extra label use. Fenbendazole at the recommended dose rate of 10 mg/kg is also considered extra-label usage. The FDA regards extra-label use of drugs as an exclusive privilege of the veterinary profession and is only permitted when a bona fide veterinarian-client-patient relationship exists and an appropriate medical diagnosis has been made. The following chart is intended to serve as a guideline for improving accuracy when dosing goats with an anthelmintic, but these drugs should be used in goats only when appropriate veterinary advice has been received. Cattle pour-on dewormers should NEVER be used in goats to treat internal parasites.

Drug resistance to multiple drugs and sometimes to all available drugs in parasites of goats is extremely common. The effectiveness of a dewormer should always be tested before being used by performing a Fecal Egg Count Reduction Test (FECRT) or DrenchRite larval development assay (contact Sue Howell in Dr. Kaplan's laboratory [706-542-0742; or drenchrt@uga.edu] for more information about the DrenchRite test, current cost = $450).

To improve the effectiveness of deworming treatments, multiple dewormers may be administered at the same time sequentially. It is important not to mix the different drugs together as they are not chemically compatible. They should be given separately, but can all be given at the same time, one right after the other. It is always recommended to treat goats selectively given their individual need for treatment based on FAMACHA score, fecal egg count, body condition score, and other health measurements as a guide. This recommendation is even more important when using drugs in combination. If all animals in the herd are treated, resistance to the dewormers will develop rapidly, and if using a combination there will be nothing left to use when this happens.

ADDITIONAL NOTE ON CYDECTIN: For a short period, it was recommended to administer Cydectin (moxidectin) by injection. However, new information suggests that the oral route is preferred. If the cattle injectable is used, FARAD recommends a 120-130 day meat withdrawal time. NOTE that the cattle pour-on formulation should NOT be administered to goats orally – this is not permissible under extra-label use law. ALWAYS use the sheep oral drench. Check http://www.acsrpc.org/ website for more information on drug choice and drug resistance.

Updated September 2014
Table 1: Commonly used anthelmintics in sheep and goats.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Class</th>
<th>Approved Sheep</th>
<th>Approved Goats</th>
<th>Dosage (mg/kg)</th>
<th>How Supplied</th>
<th>Prevalence of Resistance*</th>
<th>Meat WDT</th>
<th>Milk WDT For Goats</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin</td>
<td>AM</td>
<td>Yes</td>
<td>No</td>
<td>Sheep 0.2</td>
<td>Sheep oral drench</td>
<td>high</td>
<td>Sheep 11 days</td>
<td>Goats 14 days**</td>
<td>9 days**; Cattle injectable formulation not recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goats 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doramectin</td>
<td>AM</td>
<td>No</td>
<td>No</td>
<td>Sheep 0.2</td>
<td>Injectable</td>
<td>high</td>
<td>ND</td>
<td>NE</td>
<td>Not recommended because long residual activity promotes resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goats 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moxidectin</td>
<td>AM</td>
<td>Yes</td>
<td>No</td>
<td>Sheep 0.2</td>
<td>Sheep oral drench</td>
<td>low to moderate</td>
<td>Sheep 14 days</td>
<td>Goats 17 days**</td>
<td>8 days**; Kills Ivermectin-resistant Haemonchus. Minimize use to preserve efficacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goats 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levamisole</td>
<td>I/T</td>
<td>Yes</td>
<td>No</td>
<td>Sheep 8.0</td>
<td>Soluble drench powder</td>
<td>low to moderate</td>
<td>Sheep 3 days</td>
<td>Goats 4 days**</td>
<td>3 days; Toxic side effects = salivation, restlessness, muscle fasciculations. Recommend weighing goats before treatment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Goats 12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morantel</td>
<td>I/T</td>
<td>No</td>
<td>Yes</td>
<td>Goats 10</td>
<td>Feed premix</td>
<td>moderate</td>
<td>Goats 30 days</td>
<td></td>
<td>0 days; Approved for use in lactating goats. Surveys for prevalence of resistance have not been performed.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Fenbendazole | BZ | No* | Yes | Sheep 5.0 | Paste Suspension Feed block Mineral Pellets | high | Goats 6 days* (for suspension only) | 0 days* (for suspension only) | *Approved in Big-horned sheep.
**Label dose is 5.0 mg/kg but 10 mg/kg is recommended for goats.
Listed WDT are for the 5 mg/kg dose. At 10 mg/kg, WDT should be extended to 16 days for meat and 4 days for milk** |
| | | | | Goats 5.0 | | | | | |
| | | | | | | | | | |
| Albendazole | BZ | Yes | No | Sheep 7.5 | Paste Suspension | high | Sheep 7 days | Goats 9 days** | 7 days**; Don't use within 30 days of conception. Effective against Moniezia tapeworms. |
| | | | | Goats 20 | | | | | |

AM = Avermectin/Milbemycin (Macroyclic Lactone)
BZ = Benzimidazole
I/T = Imidazothiazole/Tetrahydropyrimidine
WDT = Withdrawal time
NE = Milk WDT has not been established in goats; product should not be used in lactating dairy goats
ND = Meat withdrawal time has not been established. To be safe it is suggested to double cattle WDT
*In the southern United States. Prevalence of resistance has not been established elsewhere.
**Based on FARAD recommendations
This table is intended for veterinary use only. Others should consult with their veterinarian before using any drug in an extra-label manner

Table is modified from one published in 5th edition of Current Veterinary Therapy: Food Animal Practice “Anthelmintic Therapy in an Era of Resistance,” by Ray M. Kaplan, DVM, PhD, DipEVPC. It has been updated to reflect changes as of September 2014.
Mineral and Vitamin Nutrition

Deidre Harmon
Livestock Specialist
Department of Animal Science
NC State University

Nutritional Considerations:
What’s Needed?

- Protein
- Energy
- Vitamins
- Minerals
- Water

Deficiencies most often occur:
- Stored forages
- Spoiled fats and other feedstuffs
- Animals housed indoors

Fat Soluble Vitamins

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Function</th>
<th>Deficiency Symptoms</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nerve tissue development, eyesight, bone formation, reproduction</td>
<td>Poor performance, night blindness, reproductive failures</td>
<td>Green feeds/forages, stored in liver</td>
</tr>
<tr>
<td>D</td>
<td>Utilization of calcium and phosphorus, bone and teeth formation</td>
<td>Stunted growth, bone disorders (rickets), lameness</td>
<td>Sunshine, synthesized in skin</td>
</tr>
<tr>
<td>E</td>
<td>White muscle disease, growth performance, reproduction</td>
<td>Utilization dependent on selenium</td>
<td>Green feeds/forages</td>
</tr>
<tr>
<td>K</td>
<td>Blood coagulation</td>
<td>Failure of blood to clot</td>
<td>Body synthesizes</td>
</tr>
</tbody>
</table>

Vitamin E and White Muscle Disease

- Free radicals
- Vitamin E + Selenium
- Muscle Damage

Vitamin E + White Muscle Disease

Free radicals

Free radicals

Vitamin E

Free radicals

Vitamin E + Selenium

Free radicals

Muscle Damage

Water

Water

Water
Best Management Practices for Vitamin E

- White muscle disease most prominent between birth and day 35
- Quality, green pasture = no problem
- No green forage = supplementation
 - Feed Ewes > 100 IU/hd/d in late gestation and lactation
 - Be weary of minerals stored for over 90 days

Vitamins

- Water Soluble – B complex & vitamin C
 - Not stored in tissues, constant supply needed
 - Vitamin B's: Rumen microbes
 - Vitamin C: tissue synthesis

Nutritional Considerations: What’s Needed?

- Protein
- Energy
- Water
- Minerals
- Vitamins

Mineral Concepts to Consider

- Basic understanding of mineral nutrition.
- Does poultry litter solve my mineral needs?
- Is the silver bullet bag of minerals out there?
- You get what you pay for.
How Do We Know We Have a Problem?

- Immunity
- Growth/Fertility
- Clinical Signs

Subclinical Disease — Clinical Disease

Time

Redrawn from S. Wikse, 1992, Texas A&M University Beef Cattle Short Course

How Do We Visualize Mineral Nutrition?

Trace Mineral Interactions

White Muscle disease (WMD), also known as stiff lamb disease. Lamb unable to stand as a result of tissue degeneration.

Courtesy of D.H. Muth, Oregon State University
Trace Mineral Interactions

Byproducts of the ethanol industry are high in Sulfur

- Corn Gluten Pellets 0.58 % S
- Distillers Grain w/ Solubles 0.66 % S

<table>
<thead>
<tr>
<th>Copper Antagonist</th>
<th>Deficient</th>
<th>Ideal</th>
<th>Marginal</th>
<th>High</th>
<th>Maximum Tolerable Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (ppm)</td>
<td>Below 50</td>
<td>50-200</td>
<td>>200-400</td>
<td>>400</td>
<td>1000</td>
</tr>
<tr>
<td>Sulfur (%)</td>
<td>Below 0.10</td>
<td>0.15-0.20</td>
<td>>0.20-0.30</td>
<td>>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>Molybdenum (ppm)</td>
<td>Below 1</td>
<td>0.1-3</td>
<td>Above 3</td>
<td>S</td>
<td></td>
</tr>
</tbody>
</table>

Mineral Nutrition

- Slats = minerals
- Water capacity = Animal Performance
- Animal performance is only as good as the most limiting nutrient

Minerals

- Macro (major - %)
 - Calcium (Ca)
 - Phosphorus (P)
 - Magnesium (Mg)
 - Potassium (K)
 - Sodium (Na)
 - Chlorine (Cl)
 - Sulfur (S)

- Micro (minor - ppm)
 - Iron (Fe)
 - Manganese (Mn)
 - Copper (Cu)
 - Selenium (Se)
 - Zinc (Zn)
 - Iodine (I)
 - Cobalt (Co)
 - Molybdenum (Mo)

Stage of production and level of performance greatly influences animal requirements.
Macromineral Requirements

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Requirement</th>
<th>Max Tolerable Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>0.20-0.82</td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.16-0.38</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.12-0.18</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.50-0.80</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.09-0.18</td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.14-0.26</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Micromineral Requirements

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Requirement</th>
<th>Max Tolerable Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>0.10 – 0.80</td>
<td>50</td>
</tr>
<tr>
<td>Iron</td>
<td>30-50</td>
<td>500</td>
</tr>
<tr>
<td>Zinc</td>
<td>20-33</td>
<td>750</td>
</tr>
<tr>
<td>Manganese</td>
<td>20-40</td>
<td>1,000</td>
</tr>
<tr>
<td>Copper</td>
<td>7-11</td>
<td>25</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.10 – 0.20</td>
<td>2</td>
</tr>
<tr>
<td>Cobalt</td>
<td>0.10 – 0.20</td>
<td>10</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.50</td>
<td>10</td>
</tr>
<tr>
<td>Fluorine</td>
<td></td>
<td>60-150</td>
</tr>
</tbody>
</table>

Forage Distribution In The Southeast

- Cool Season Annuals
- Warm Season Perennials
- Sorghums & Millets
- Crabgrass
- Cool Season Perennials

Forage Mineral Concentrations Vary Based On

- Soil pH
How Soil pH Affects Availability of Plant Nutrients

Soil pH and Root Development

Forage Mineral Concentrations Vary Based On

- Soil pH
- Year

Yearly Variations in Forage Mineral Concentrations in Virginia

Jones and Tracy, 2013
Forage Mineral Concentrations Vary Based On

- Soil pH
- Year
- Season

General Trends:
- P, K, S, Mn, Cu, Zn: Highest in spring, lowest in summer, partial recovery in fall
- Mg: Lowest in spring, highest in summer, low in fall

Seasonal Mineral Concentrations in Virginia Fescue Pastures

<table>
<thead>
<tr>
<th>Mineral</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (%)</td>
<td>0.28a</td>
<td>0.27a</td>
<td>0.25b</td>
<td>0.21c</td>
<td>0.24bc</td>
<td>0.25b</td>
<td>0.24b</td>
</tr>
<tr>
<td>K (%)</td>
<td>2.21a</td>
<td>2.21a</td>
<td>2.07ab</td>
<td>1.59c</td>
<td>1.57c</td>
<td>1.96b</td>
<td>1.93b</td>
</tr>
<tr>
<td>S (%)</td>
<td>0.33a</td>
<td>0.30a</td>
<td>0.19d</td>
<td>0.16e</td>
<td>0.19d</td>
<td>0.21b</td>
<td>0.20bc</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>0.54a</td>
<td>0.45a</td>
<td>0.51e</td>
<td>0.47e</td>
<td>0.52de</td>
<td>0.53ab</td>
<td>0.49de</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>0.23a</td>
<td>0.22a</td>
<td>0.25d</td>
<td>0.24e</td>
<td>0.28</td>
<td>0.30b</td>
<td>0.27e</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>105.4a</td>
<td>96.2ab</td>
<td>79.5c</td>
<td>85.8e</td>
<td>92.2d</td>
<td>87.1ab</td>
<td>87.0e</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>11a</td>
<td>8.9a</td>
<td>7.9d</td>
<td>7.2a</td>
<td>8.3a</td>
<td>8.3a</td>
<td>9.0a</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>34.2a</td>
<td>30.2a</td>
<td>25.8a</td>
<td>23.3a</td>
<td>24.9</td>
<td>25.7a</td>
<td>26.8a</td>
</tr>
</tbody>
</table>

Sheep Requirements:
- P: 0.16-0.38
- K: 0.50-0.80
- S: 0.14-0.26
- Ca: 0.20-0.82
- Mg: 0.12-0.18
- Mn: 20-40
- Cu: 7-11
- Zn: 10-31

Notes:
- Jones and Tracy, 2013
Mineral Content of Pennsylvania Forages

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Legume Forage</th>
<th>Mixed, Mainly Legume</th>
<th>Grass Forage</th>
<th>Mixed, Mainly Grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (%)</td>
<td>0.30</td>
<td>0.29</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>1.18</td>
<td>1.02</td>
<td>0.49</td>
<td>0.65</td>
</tr>
<tr>
<td>K (%)</td>
<td>2.55</td>
<td>2.26</td>
<td>1.68</td>
<td>1.79</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>0.24</td>
<td>0.22</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>Na (%)</td>
<td>0.024</td>
<td>0.018</td>
<td>0.014</td>
<td>0.013</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>44.1</td>
<td>48.1</td>
<td>76.4</td>
<td>53.3</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>221.7</td>
<td>222.0</td>
<td>184.4</td>
<td>192.3</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>18.1</td>
<td>27.2</td>
<td>27.6</td>
<td>26.5</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>13.1</td>
<td>13.1</td>
<td>12.9</td>
<td>12.0</td>
</tr>
</tbody>
</table>

General Trends:
Legumes > Grasses in Ca, K, Mg, Cu, Zn, Co
Legumes < Grasses in Mn, Si

Adams, 1975

Forage Mineral Concentrations Vary Based On
- Soil pH
- Year
- Season
- Forage species
- Forage maturity
- Environment

Forage Mineral Concentrations and Utilization

Mineral Bioavailability
- Forage mineral is not 100% available
- Bioavailability = portion of mineral absorbed and utilized
- Minerals come in many forms
- Minerals may be bound in insoluble complexes (lignin)
Mineral Bioavailability

- Bioavailability is dependent on:
 - Maturity
 - Grass species
 - Growing conditions (stressors)
 - Slow improvements
 - Ruminal release of minerals from forages

Proportions of minerals in cell wall

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Tall Fescue</th>
<th>White Clover</th>
<th>Alfalfa</th>
<th>Sandsagegrass</th>
<th>Bermudagrass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>4.5</td>
<td>7.8</td>
<td>7.1</td>
<td>7.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Sulfur</td>
<td>3.6</td>
<td>5.2</td>
<td>6.0</td>
<td>6.8</td>
<td>6.9</td>
</tr>
<tr>
<td>Calcium</td>
<td>14.1</td>
<td>14.3</td>
<td>15.0</td>
<td>14.8</td>
<td>15.9</td>
</tr>
<tr>
<td>Magnesium</td>
<td>6.5</td>
<td>10.2</td>
<td>9.0</td>
<td>8.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Potassium</td>
<td>1.7</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>2.8</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Copper</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Ruminal release of minerals from forages

Common Mineral Nutrition Problems – Selenium Deficiency

- White muscle disease
- Reproductive failure
 - Embryonic mortality (weeks 3–4)
- Hypothermia (indirectly)
 - Cannot burn brown adipose tissue to generate body heat
- Poor performance
- Reduced disease resistance

Solutions
- Forage analysis
- Deficiencies
- Antagonisms
- Evaluate supplementation
- Monitor mineral suppl. intake
 - Read tag
 - Add salt to regulate intake
 - Mix with carrier and hand feed

Common Mineral Nutrition Problems – Copper Toxicosis

- Copper accumulates in liver
- Bloody diarrhea
- Yellowish eyes
- Yellow body fat

Solutions
- Sheep specific supplements
- Check molybdenum levels
 - CU:MO ratio range of 6:1 up to 10:1
- Remove all stressors

Common Mineral Nutrition Problems – Iodine Deficiency

- Enlarged thyroid gland (goiter)
- Lambs born weak, dead, or without wool
- Mature ewes have decreased reproductive efficiency

Solutions
- Potassium iodide supplementation
- Replace white salt with iodized salt or trace mineral salt
 - Look for 140 ppm mineral
Common Mineral Nutrition Problems – Magnesium Deficiency

- Grass Staggers
- Lactation increases Mg needs
 - Start at least 6 weeks prior to lambing
- Supplement for fall and spring flush

Grass Tetany

Lush Pasture

High forage potassium (K)

Low forage magnesium (Mg)

Ewes in peak lactation

Common Mineral Nutrition Problems – Sulfur Toxicity

- Sulfur Toxicity (Polioencephalomalacia)
- Damage to grey matter of the brain
- Dietary feed resources (max. Sulfur concentrations)
 - 0.3% grain-based (Corn co-products and molasses)
 - 0.5% forage-based (sulfate based fertilizers)
 - Water less than 600 mg/L sulfate (Springs)
- Antagonistic
 - Binds Cu reducing absorption
 - Lowers Se digestibility
 - Inhibits Se incorporation into enzymes
 - Reduces Mn & Cu retention

Common Mineral Nutrition Problems – Milk Fever

- Hypocalcemia (Milk Fever)
- High in legumes than grasses
- Corn based diets and corn co-products are low in calcium
- Dietary Ca:P ratio near 2:1

Factors	Situations
Low calcium intake, especially for dry ewes | Heavy alfalfa hay feeding fertilized with potassium (cation imbalance)
Low phosphorus intake | Inadequate supplementation; high forage - low grain (i.e. pasturing dry cows)
Excessive phosphorus intake | Over supplementation; excessive grain feeding
Excessive vitamin D | Over supplementation can lead to calcification of bones and need to heart failure
Low magnesium intake | Failure to balance low magnesium forages, i.e. corn, hay, grasses, and small grains
High potassium intake as it affects anion-cation balance | Forages high in potassium content - over 1.5% on a dry matter basis.
Selenium or vitamin E deficiency | White muscle disease; lack of supplementation

I’m using poultry litter for fertilizer, so I don’t need to feed any phosphorus, right???
Estimating the Phosphorus Status of Grazing Beef Cattle in Virginia

Deidre D. Harmon, Scott J. Neil, Mark A. McCann
Department of Animal and Poultry Sciences
Virginia Tech

Why focus on P?

P ingested
- Formation of bones, teeth, and genetic material
- Energy metabolism and maintenance of GI tract
- Blood buffering system and activates B vitamins
- P for lactation
- Reproductive performance
- Recycled through saliva
- P excreted through the feces
- P excreted via urine

Environmental Issues
Production and Performance

What are our sources of P for sheep?

• Forage
• Feed
• Mineral
What are our sources of P... for forages?

Mineral Nutrition is like your pay check

Income
Taxes
Insurance
Leaching and runoff
Organically bound in soil

Estimating P Status of Grazing Beef Cattle

- Forage samples
 - Fresh and hay
- Mineral samples
- Soil samples
- Fecal grab samples
- Survey

Phosphorus Forage Sample Distribution

P requirement ranges from 0.16 to 0.38% of DM
Phosphorus Forage Sample Distribution

- 154 lb ewe 6-8 weeks lactation, twins
- 154 lb ewe, last 4 weeks gestation
- 110 lb finishing lamb (ADG = 0.45lbs)

Phosphorus Survey Conclusions

- Many producers have adequate amounts of P already in their forages and soils
- Except in very poor quality forages, supplementation is usually not needed

Phosphorus Forage Sample Distribution

- Fresh forage min
- Fresh forage max
- Hay min
- Hay max

Where Do We Start With Selecting A Mineral?

- What is the stage of production?
- Did you have the forage tested?
 - Best starting place
- Any supplement?
 - May give us some minerals
- READ THE TAG

What's in the forage?

- P = 0.16 – 0.38%
- Ca = 0.20 – 0.82%
- Mg = 0.12 – 0.18%

Mineral Analysis

<table>
<thead>
<tr>
<th>Mineral</th>
<th>As-Sampled</th>
<th>Dry-Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphates</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>Potassium</td>
<td>70%</td>
<td>5%</td>
</tr>
<tr>
<td>Calcium</td>
<td>33%</td>
<td>12%</td>
</tr>
<tr>
<td>Magnesium</td>
<td>80%</td>
<td>41 PPM</td>
</tr>
<tr>
<td>Iron</td>
<td>11% PPM</td>
<td>120 PPM</td>
</tr>
<tr>
<td>Aluminum</td>
<td>8% PPM</td>
<td>80 PPM</td>
</tr>
<tr>
<td>Copper</td>
<td>8 PPM</td>
<td>8 PPM</td>
</tr>
<tr>
<td>Zinc</td>
<td>4 PPM</td>
<td>4 PPM</td>
</tr>
<tr>
<td>Iron</td>
<td>180 PPM</td>
<td>202 PPM</td>
</tr>
</tbody>
</table>

Calcium:Phosphorus Ratio = 1:70
What’s our strategy?

Phosphorus:
– Can’t add any without adding Ca (maintain ratio)

Magnesium:
– K is slightly higher than requirement

Calculating mineral needs

Phosphorus:
– Requirement = 0.30% → 15% adj = 0.35%
– DMI = 3.85 lb/d
– Mineral intake = 1 oz OR ~1.62% of DMI

Forage Mineral Req
0.984*(0.30%) + 0.0162*(x%) = 0.35%
\[x = 3.5\% \]
– Additional Ca to maintain >2:1 ratio
\[3.5 \times 2 \approx 7\% \text{ Ca} \]

What about a supplement?

• Several supplements used today are high in phosphorus
 – Corn gluten feed, distillers grains, brewer’s grains, wheat middlings
 – Saves $$ on P, and make mineral shopping easier

My flock isn’t consuming the right amount

• Read the tag
• 100 ewes x 1 oz = 100 oz ÷ 16 oz = 6.25 lb/day
 6.25 lb x 7 days = 44 lb/week
• Not consuming enough:
 – Mix into supplement
 – Add flavor enhancer (cottonseed meal, distillers grains, etc.)
• Consuming too much:
 – Mix into supplement
 – Only put out a weeks worth at a time each week
 – Mix additional salt
Focus On Mineral Management

- Placement
- Mineral Feeders
- Intake

White Salt – Is It Enough?

<table>
<thead>
<tr>
<th>Mineral Source</th>
<th>% in Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>99.21%</td>
</tr>
<tr>
<td>Ferrous Carbonate</td>
<td>0.526%</td>
</tr>
<tr>
<td>Zinc Oxide</td>
<td>0.486%</td>
</tr>
<tr>
<td>Manganese Dioxide</td>
<td>0.234%</td>
</tr>
<tr>
<td>Reddish Brown Iron Oxide</td>
<td>0.252%</td>
</tr>
<tr>
<td>Copper Sulfate</td>
<td>0.120%</td>
</tr>
<tr>
<td>Mineral Oil</td>
<td>0.020%</td>
</tr>
<tr>
<td>Calcium Iodate</td>
<td>0.011%</td>
</tr>
<tr>
<td>Cobalt Carbonate</td>
<td>0.0108%</td>
</tr>
<tr>
<td>Artificial Flavor</td>
<td>0.005%</td>
</tr>
</tbody>
</table>

Cattle Red Trace Mineral Blocks

Trace Mineral Salt w/Selenium

- Ingredients List
 - Typically listed greatest quantity to smallest quantity
• Group feed based on production stage.
• Know your forages.
• Know your supplement
• Hand pick the mineral to fit biggest deficiencies

Questions?
Weekly Sheep and Goat Sales
New Holland Sales Stables, New Holland, Pennsylvania
Tom Stanley, Extension Agent, Farm Business Management

Why New Holland

The New Holland Sales stables sells the largest volume of sheep and goats on the East Coast. Virtually all of sheep and goats sold through New Holland go to a diverse array of ethnic communities scattered throughout the Northeastern United States. In 2018 alone, the Monday sale of sheep and goats had volumes of over 139,000 head of sheep and lambs and over 95,000 goats. As a result of this volume, New Holland as the bellwether of sheep and goat pricing on the East Coast. The weekly weighted average price report for the Monday sheep and goat sale published by the USDA Market News Service is an excellent resource for pricing information and is the foundation of this paper.

Disclaimers

The New Holland Sales Stables is a live ‘out-cry auction’ and there is an abundance of anecdotes surrounding the personalities, cultural demographics, and sale procedures at the New Holland sheep and goat sales. Based on interviews with producers and marketing agents that frequent the New Holland weekly sheep and goat sale, there are three topics that appear to most impact Virginia sheep and goat producers whether they use the New Holland Sales Stables to market their animals or for price discovery.

The first of these are discrepancies in prices received and those that appear in the market report. In weeks with large volumes of sheep and lambs (over 3,500 head of sheep) the sale will stretch beyond the time USDA data collection agents have to devote to the sale so the prices at the end of the sale are not always captured in the weekly report. This issue appears to have been alleviated to a degree in 2017 and 2018 when New Holland management has moved more sheep sale to Tuesday morning when volumes are high (close-to or above 4,000 head of sheep and lambs).

Closely related to this first point is the sale order. For producers that sell sheep and goats through New Holland, where their animals come in the sale order is a critical determinant in the number of buyers bidding on the animals and the price paid. On this point in particular, there are many anecdotes related to sellers jockeying for position in the sale order and the level of participation from buyers at different points in the sale.

Finally, of particular interest to any shepherd whose lambs or goats may have to travel a significant distance to reach New Holland Pennsylvania, is the question of weight shrinkage. Some producers report significant weight shrink between when the animals leave the farm and what they weigh when they exit the sale ring and settlement checks are written. Here again are numerous anecdotes that are difficult to verify and cannot be captured by a market price report. New Holland Sales Stables will provide hay and water to animals that arrive Saturday or Sunday for an up-coming sale. However, active presence of the seller or seller’s agent to insure appropriate penning of the animals that allows them access to the hay and water is critical for the animals to benefit from these provisions.
Price Histories and Patterns

All disclaimers aside, the USDA Market News report for New Holland’s weekly sale remains a valuable resource and this paper attempts to highlight some very general price patterns. This author looks forward to devoting more time to more in-depth analysis of these data. Each group of animals reported on the weekly USDA New Holland Sales report constitutes a line of data, each line with a number of head, low weight, high weight, weighted average weight, low price, high price, and weighted average price and sometimes a note. After some data editing to remove redundancies and duplicates, that still leaves 22,000 lines of data for the period 2013 – 2018!

In the period covered by this paper 2013 - 1018, the Islamic holiday of Eid ul-Adha (the ‘festival of sacrifice’) moved from mid October to late August. The three weeks prior to this holiday are characterized by very heavy sale volumes of sheep and goats.

LAMBS
When looking at these charts for lambs, it is important to pay close attention to the price scale on the right-hand axis. The values are expressed as “value per head” to facilitate comparisons across weight categories. In general, all weight categories are subject to significant swings in number of head for sale from week to week. All categories, with the exception of the heaviest lambs, appear to have a low supply period in January, February, and early March.
Average Value per Head and Volume of Kids <30lbs, New Holland Weekly Sale

- **Avg No. Head per Week - Kids < 30#**
- **Value/Head <30#**

Average Value per Head and Volume of Kids 30-50lbs, New Holland Weekly Sale

- **Avg No. Head per Week - Kids 30 - 50#**
- **Value/Head 30 - 50#**
Just as with the lambs, it is important to pay close attention to the price scale on the right-hand axis. The values are expressed as “value per head” to facilitate comparisons across weight categories. In general, all weight categories are subject to significant swings in number of head for sale from week to week. All categories, with the exception of the heaviest kids, appear to have a low supply period in January, February, and early March.
Lambing Management

- Time investment is key
 - How often will you check ewes?
- Important for financial success
 - Lbs of lamb weaned per ewe
- Must save as many lambs as possible to maximize profits

*What are your goals for lamb mortality (# dead)?

Lambing Management

The largest percent of lambs are lost at or shortly after birth

- Difficult births
- Starvation
- Hypothermia

- Starvation and hypothermia can be corrected by the manager

Preventing Lamb Loss

Adequate nutrition particularly in 3rd trimester

Condition at lambing is the most important determinant of lamb survival (effect on birth weight)

Lambs need BAT (brown adipose tissue)

- First source of energy of lamb
- Utilized to produce heat
- Ewe must have adequate BCS and mineral supplementation for lambs to have BAT
Body Condition Scoring
For Spring Lambing

<table>
<thead>
<tr>
<th>Group</th>
<th>Timing</th>
<th>Ideal BCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breeding Ewes</td>
<td>Pre-Breeding</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Midpregnancy</td>
<td>2.5-3</td>
</tr>
<tr>
<td></td>
<td>Lambing</td>
<td>3+</td>
</tr>
<tr>
<td></td>
<td>Weaning/Drying off</td>
<td>2+</td>
</tr>
<tr>
<td>Rams</td>
<td>Pre-Breeding</td>
<td>3-3.5</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>2+</td>
</tr>
</tbody>
</table>

Research and BCS
Oregon State University

- Ewes with a body condition score of 3 to 4 at lambing lost fewer offspring and weaned more pounds of lamb than those with a condition score of 2.5 or less

- There was a 33% difference in total weight of lamb weaned (64 versus 85 pounds per ewe) between ewes with pre-lambing body condition scores of 2.5 to 3.5

Fat and Thin Ewes
Reasons and Consequences

Why are ewes too thin?
- Inadequate nutrition, parasitism, inadequate bunk space, inadequate grouping of animals, wasting diseases, chronic diseases, genetics, high milk production (multiple lambs), old (need to be culled)
- This sets them up for: failure to conceive, less lbs lamb weaned, pregnancy toxaemia, parasitism and disease

Why are ewes too fat?
- Were not culled, poor milk production (low wean wt), overfed in early-midgestation, dominant ewes
- This sets them up for: pregnancy toxemia, fatty liver, dystocia, vaginal prolapse

Pre-Lambing Reminders

- Vaccinate ewes with CD&T vaccine 4-6 weeks prior to parturition
- Shear woolled ewes about 1 month prior to lambing or crutching (remove wool around vulva and udder)
- Consider famachacha check or deworming prior to lambing because of periparturient rise in worm eggs near time of lambing (feed higher protein diet prior to lambing)
- Consider feeding a coccidiostat during late gestation and early lactation
- Daily exercise is important prior to lambing
- Minimize stressors (adequate bunk space, stable grouping, parasite control, excellent nutrition, adequate mineral supplementation)
Lambing Facilities

- Must be CLEAN and DRY
- Eliminate drafts
- Lambing jugs (pens): Need enough for 10% of herd (5x5 for larger ewes)

Lambing on pasture
- Lamb on clean, well-rested pasture
- Access to shelter is necessary
- Jug ewes with problem births

Don’t leave in lambing jugs too long (exposure to parasites/ventilation concerns)

Who is most likely to have problems with difficult birth?

- Yearling mothers
- Obese animals
- Lack of exercise in late pregnancy
- Inadequate nutrition

Do not intervene as long as progress is being made

Causes of Dystocia

- Failure of cervix to dilate or dilate completely
- Lamb with large head or shoulders (fetal disproportion)
- Twins coming simultaneously
- Ewe disturbed during the initial stage of lambing
- Lamb(s) in abnormal presentation, position, or posture (malpresentation)

Others include vaginal prolapse and deformities

Stages of the Birthing Process

Stage 1 (1-8 hours): Cervical dilation

- Separate from herd, uneasiness
- Kicking and pawing at ground
- Lying down and getting up frequently
- Urinating or attempts at it
- Some vaginal discharge

Intervene if stage 1 is longer than 8 hours
Stages of the Birthing Process

Stage 2 (1/2-2 hours): 15-30 mins per lamb
- Lamb in birth canal
- Active contractions
- Appearance of water sac, feet

*Intervene when:
- Active labor for 30 minutes and no progress
- Water sac observed for >1 hour and no pushing
- Swelling from tongue of lamb, 3 feet, a tail
- Ewe is showing signs of severe distress or fatigue

Tips for Examination
- Clip excess or dirty wool from around anus
- Remove all dirt around vulva and anus
- Scrub hands or arms before entering vulva and wear OR sleeves
- Apply liberal amounts of lube (put handfuls into vagina/uterus before manipulating)
- Shape the hand into a natural wedge
- Push forward in between contractions
- Determine presentation, position and posture

* Best to manipulate lambs with ewe standing or elevating hindquarters

Normal Birth Presentation

Stage 3 (1/2-1 hour)
- Passing of the fetal membranes
- When should you be concerned?
Determine Presentation, Position, and Posture

Presentation: Head first (anterior)

Position: Right-side up (dorsal-sacral)

Posture: Right limb flexed back

How is this corrected?

Breech Lambs

- P: Butt first (posterior)
- P: Upside down (dorsal-pubic); Right side up (dorsal-sacral)
- P: Hindlimbs facing head of dam

- P: Hindlimbs first (posterior)
- P: Right side-up (dorsal-sacral)
- P: Hindlimbs exiting pelvis

More common with 2+ lambs

Determine if front or hindlimbs coming through first

- **Front limbs:** Joints flex in the same direction
- **Hind limbs:** Joints flex opposite of each other

Make sure limbs are connected to head/shoulder that is present
With twins+ any combination of front and hind limbs may be present

If unable to determine the 3 p’s or unable to successfully correct the problem within 20 mins seek professional help

What are the 3 P’s? How is this corrected?
Obstetrics Pointers

- Stretch vulva up over head when lamb is coming out
- If large lamb, rotate the lamb so the hips (and potentially shoulders) are in a diagonal position coming through the pelvis
- Pull the lamb when the ewe is having contractions
- After pulling lamb use straw or stick to stimulate lamb (pressure point just inside the nose)
- Check for spares (more lambs) and tears
- Be clean and don’t muck around too long (lambs will die or uterus will tear)
- Questions about delivering lambs, additional pointers???

Post-Lambing Management

- Make sure ewe licking and grooming ALL lambs
- Within a few hours of birth, make sure lambs have nursed and ingested COLOSTRUM
 - Clear wax plug if needed
 - Milk into mouth and help latch
 - Make sure full belly on palpation

Post-lambing Management

- Place in lambing jug (mismothering can cause losses), unless pasture lambing
 - Can take up to 6 hours for a ewe to recognize her lamb(s)
 - Twice as long for lamb to recognize its mother
 - Low chance for survival if not accepted by ewe
 - Dip navel (7% iodine)
 - Tag lambs
 - Give injectable selenium/vitamin E (if desired)
 - Check health status multiple times throughout day for first few days

*Give intranasal vaccine if respiratory disease is a problem in pre-weaned lambs

Colostrum

- Supplies the energy, proteins (antibodies for immunity), and fat to help the lamb thermo-regulate
- Timely ingestion of colostrum is key for thermo-regulation
- The ability to absorb antibodies from colostrum diminishes as its body temperature becomes colder
- Stress from cold or a difficult birth can interfere with optimum absorption
 - Can lead to problems with
 - Scours
 - Pneumonia
 - Other infections
Colostrum Supplementation

- Ideally use stored colostrum from sheep (frozen colostrum)
 - Thaw in warm water bath
- Can also use cow/goat colostrum or colostrum replacer
- Give 20-25 mL (cc) per lb of body weight (7-8 ounces to a 10 lb lamb)
 - Approximately 30 mL per ounce
 - ~200 mL for a 10 lb lamb

* Lambs must be >90°F to absorb colostrum (be aware of hypothermia)

Why do Lambs get Hypothermic/Starved?

- Fails to nurse (ingest colostrum) shortly after birth
- Secondary to dystocia
- Prolonged birth
- Poor mothers (must lick and dry lamb off)
- Cold weather, particularly windy or precipitation (drafts in barns, etc)
- Lambs born to ewes with poor nutrition during gestation
- Lambs born to ewes in poor BCS (don’t have or can’t utilize BAT)

Indications of Hypothermia/Starvation

- Hunched posture
- Hollowed out sides
- No suckle reflex
- Excessive calling
- Skin tent
- Down or slow to rise
- Unresponsive, flat-out

First Determine if a Lamb is Cold

- Put fingers in mouth and feel if cold
- Take a rectal temperature (put thermometer deep into rectum)
 - Normal temperature soon after birth 102-103°F
 - Definitely must warm up ≥100 (dry off first)
 - Don’t feed colostrum if lamb is <90
 - Is lamb able to stand or suckle?

* Don’t tube a cold lamb, it will probably lead to death….
If Temperature >99 F and can Stand
- Collect milk or colostrum from dam and feed (use alternative source if necessary)
- Feed by stomach tube
- Put in warming box until temp reaches 101
- Return to mother

If temp is <99, still standing
- Warm up first to 99 F and then feed by stomach tube

If Temperature <99 F and unable to stand/swallow
- Put in warming box (check temp every 20 mins)
- Collect colostrum from mother
- Tube feed at 99
- Warm to 101
- Return to Mother if bright and standing well

If lamb is >5 hours of age
- Can give IP injection of dextrose or put sugar on the tongue before placing in warming box

Hypothermia: How to Warm Lambs up
- Warming box or crate
- Heat lamp, electric blanket, warm water bottle, heated towels
- Warm water bath
- Floor board of the truck with heaters
- Near fireplace in the house/garage

*Warm to 101-102 and make sure it maintains body temperature

Any Questions?
Tips for Making Sound Financial Decisions on the Farm

Dr. Alex White
Dairy Science
Virginia Tech
axwhite@vt.edu

Goals, blah, blah, blah....

• You MUST know your goals for the operation
 • Increase profit/ewe by 15% by ...
 • Increase lambing percentage to 170% by ...
 • Expand by 50 ewes over the next 3 years...
• Having clear goals helps you make better decisions
 • Specific, Measurable, Time-frame
 • Make them visible!!

Good Records are Essential

• Your record system should:
 • Be accurate
 • Be usable
 • Provide you with information to make better:
 • Production decisions
 • Financial decisions
 • Tax management decisions
 • Be treated as a management tool, not a chore

Financial Records

• Cash Records
 • Revenues
 • Sales of lambs, culls, wool
 • Operating Expenses (Variable)
 • Feed, vet, repairs, marketing, etc.
 • Overhead Expenses (Fixed)
 • Rent, interest, liability insurance, property taxes, etc.
• Receivables & Payables
Financial Records

- Debt/Credit Records
 - Lender, loan type, principal outstanding, terms
- Balance Sheet
 - January 1 of every year
 - Helps with loan renewals
 - Helps with accrual adjustments
- Income Statement (Schedule F, P&L)
 - Use it for management decisions, not just for taxes

Recordkeeping Systems

- Quickbooks - allows enterprise accounting
- Quicken – easy but limited
- Red Wing – better for crop farms
- Handwritten ledgers

“Establishing and Using a Farm Financial Record-Keeping System”
- http://www.agecon.okstate.edu/quicken/files/pb1540.pdf

Using Those Darned Records

- For Management Decisions:
 - Enterprise Budget
 - List of all revenues and expenses related to each specific aspect of your operation
 - Feeder lambs, market lambs, goats, crops, etc.
 - Helps with calculating breakevens & sensitivity
 - Cash Flow Statement
 - List of all cash inflows and outflows by month
 - And by enterprise or expense category!

Enterprise Budgets

- For each distinct aspect of your farm
- List all revenues
 - Sale of lambs, culls, wool
- List all expenses
 - I like to separate them by Operating vs Overhead when possible
 - Operating = feed, vet, repairs, marketing, supplies
 - Expenses you have direct control over
 - Overhead = rent, prop. taxes, interest, insurance
Enterprise Budgets

- Where do I get the numbers?
- Your record system should provide all you need
- In Quickbooks, use “tags” and “classes”
 - It will automatically generate your enterprise budgets
 - See Farm Credit of the Virginias for a training module!
- Use the VCE budgets as a starting point
 - Customize them to your operation
 - And build your record system so that it will help in the future!

Enterprise Budgets

Return Above Operating Expenses

- RAOE = Total Revenues – Total Operating Expenses
- Always want this to be positive
 - If not, you are losing money on every lamb you sell
- RAOE = funds that are available to pay the Overhead costs
 - And hopefully yourself!

Enterprise Budgets

To improve RAOE:

- Increase your revenues
 - More pounds sold (How?)
 - What about the slide?
 - Higher price (more premiums or less discounts) (How?)
- Decrease your operating costs w/o hurting production
 - Look at your 5 largest costs first
 - Look for “cheap fixes”
 - Reduce feed loss
Let’s Look at the Budget

- What would you change to improve the profitability of this enterprise?
 - Production factors
 - Pricing
 - Top 5 expenses:
 - Mixed Hay
 - Corn
 - Vet & Medicine
 - Marketing
 - Alfalfa Hay

Short Run Breakeven Price

- SR Breakeven Price for Lambs
 - Assuming cull & wool income is constant
 \[
 = \frac{(\text{Total Lamb Revenue} - \text{RAOE})}{\text{Pounds Sold}}
 \]
 - Use this for marketing decisions
 - Compare to your expected market price
 - Use as a floor for forward contracting or futures/options contracts

Example of SR Breakeven Price

- From the adapted VCE budget:
 - Total Lamb Revenue $25,740
 - RAOE $11,014
 - Pounds sold (lambs only) 143 cwts

SR BE Lamb Price = \(\frac{($25,740 - $11,014)}{143 \text{ cwts}} \) = $102.98/cwt

Remember – this only covers operating costs!
 - It doesn’t cover Overhead or your labor

Long Run Decisions

- You must cover all expenses to stay in operation long term
 - And to avoid recreational lambing!
- Return Above Total Expenses
 - Aka Return to Equity, Management & Family Labor
 \[
 = \frac{\text{Total Revenues} - \text{Total Expenses}}{\text{Total Revenues}}
 \]
- What’s left over is your reward for this operation
Long Run Breakeven Price

- LR Breakeven Price for Lambs
 - Assuming cull & wool income is constant
 - \(\text{LR Breakeven Price} = \frac{(\text{Total Lamb Revenue} - \text{RATE})}{\text{Pounds Sold}} \)

- Use this for marketing decisions
 - Compare to your expected market price
 - Use as a floor for forward contracting or futures/options contracts

Example of LR Breakeven Price

- From the adapted VCE budget:
 - Total Lamb Revenue: $25,740
 - RATE: $3,894
 - Pounds sold (lambs only): 143 cwts

 \[\text{SR BE Lamb Price} = \frac{($25,740 - $3,894)}{143 \text{ cwts}} \]
 \[= $152.77/\text{cwt} \]

 Remember, this doesn’t include your salary!

Sensitivity Analysis

- No one knows what the future will bring
- So we take our best guess and add a fudge factor
- I use a 10-20% fudge factor for operating expenses
 - Total your Operating Expenses and multiply by 20%
 - Add these to your total to account for the unexpected
- Then see how that will impact your “bottom line”

Sensitivity Analysis – Example

- Total Operating Expenses: $16,780
- RATE: $3,894
- A 20% increase: $3,356
 - The new RATE is now $538 > $0 That’s good!

- How much can your Mixed Hay price increase?
 - SR: $270/ton increase to $440/ton
 - RAOE / Tons of Mixed Hay Fed
 - LR: $407/ton increase to $317/ton
 - RATE / Tons of Mixed Hay Fed
Long Run Decisions

- Fighting points:
 - Depreciation isn’t a cash expense so why include it?
 - If you have loans, treat Dep. as your principal portion
 - If you don’t have loans, treat Dep. as what you should be setting aside to replace the depreciated assets
 - I don’t know what the price or costs are going to be.
 - Take your best guess, calculate your breakevens, and/or throw a 10-20% fudge factor into your operating expenses

Long Run Decisions

- More fighting points:
 - I don’t know what my expenses are.
 - You need a better record keeping system
 - Use the VCE budget as a rough starting point
 - But I don’t want to pay taxes on the profits
 - FYI - You need to spend $4 to save $1 in income taxes
 - 3 choices – write a check to:
 - Uncle Sam & Uncle Ralph
 - Your equipment dealer
 - Yourself – through an IRA or SIMPLE or SEP retirement plan

The Cash Flow Statement

- The most important financial statement for a manager
 - Helps you:
 - See when you have a cash surplus or deficit
 - Determine when to schedule your loan payments
 - Figure out when you’ll have cash for a capital purchase or down payment
 - Estimate the size of your operating line of credit
 - See how you can shift cash flows to make life easier
 - Plan your upcoming year

Cash Flow Statement

- That’s nice, but how do I build one for my farm?
 - Use your record system
 - Especially your checkbook register
 - Then, ask Doc White for his spreadsheet (axwhite@vt.edu)
 - Use Quickbooks’ “budget” feature
 - Take your best guess
Cash Flow Example

- Look at the example cash flow
- Simplified version
- How much of an operating LOC should you request?
 - When will you be able to repay your LOC?
- What changes might you make to your operation?

Other Financial Tools

- Partial Budgets
 - A great help in analyzing changes to your operation
 - Weigh the "good side" against the "bad side"

Financial Ratios

- Use the same ratios your lenders use to help you improve your operation
 - Operating Expense/Receipt Ratio < 70%
 - Asset Turnover (Revenues/Assets) > 40%
 - Debt Coverage Ratio > 2.5%
 - ROA > 8%
 - Working Capital/Expenses > 25%

So What?

- Take time to work with your finances
- Set goals
- Build a record system that helps you make better decisions
- Enterprise budgets are great tools
 - Breakevens & sensitivity analysis make them better!
- No farm/business should be w/o a cash flow statement
Sheep: Spring Lambing; Raise Replacements

100 EWES

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Head</th>
<th>Cwt</th>
<th>Unit Price</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambs</td>
<td>130</td>
<td>1.10</td>
<td>$180.00</td>
<td>143.00</td>
<td>$25,740.00</td>
</tr>
<tr>
<td>Cull Ewes</td>
<td>12</td>
<td>1.50</td>
<td>$80.00</td>
<td>18.00</td>
<td>$1,440.00</td>
</tr>
<tr>
<td>Cull Ram</td>
<td>1</td>
<td>2.00</td>
<td>$90.00</td>
<td>2.00</td>
<td>$180.00</td>
</tr>
<tr>
<td>Wool</td>
<td>6.50</td>
<td>Lbs/Head</td>
<td>$0.65</td>
<td>669.50</td>
<td>$435.18</td>
</tr>
</tbody>
</table>

1. GROSS REVENUES

- **Gross Revenues**
 - Lambs: 130 @ $1.10 Cwt = $143.00
 - Cull Ewes: 12 @ $0.80 Cwt = $18.00
 - Cull Ram: 1 @ $0.90 Cwt = $2.00
 - Wool: 6.50 Lbs/Head @ $0.65 = $669.50

2. TOTAL GROSS REVENUES

- **Total Gross Revenues**
 - $180.00
 - $80.00
 - $90.00
 - $669.50
 - **Total** = $277.95 Per Ewe
 - **Total for farm** = $27,795.18

3. OPERATING EXPENSES

- **Feed Loss**
 - Alfalfa Hay, Bloom: 5.0% Ton @ $200.00 = $948.71
 - Mixed Hay, 2nd Cutting: 5.0% Ton @ $170.00 = $4,487.49
 - Grass Hay, Average: 5.0% Ton @ $150.00 = $0.00
 - Pelleted Supplement: 2.0% Ton @ $425.00 = $565.33
 - Corn Grain: 2.0% Bushel @ $4.00 = $2,742.43
 - SBOM 48%: 2.0% Cwt @ $16.25 = $237.17
 - Limestone: 2.0% Cwt @ $2.25 = $1.66
 - Dical: 2.0% Cwt @ $13.50 = $0.00
 - Grinding & Mixing: Cwt @ $1.40 = $558.98
 - Salt & Mineral: Lbs per Ewe @ $22.00 = $433.38
 - Vet & Medicine: $/Head = $1862.11
 - Shearing: Head @ $5.00 = $520.00
 - Supplies: Head @ $2.00 = $200.00
 - Replacement Ram: Head @ $450.00 = $450.00
 - Stockpiled Pasture: 0.00 Acres per Ewe @ $51.00 = $0.00
 - Pasture: 0.33 Acres per Ewe @ $21.00 = $693.00
 - Haul Cull Sheep: Head @ $5.20 = $67.60
 - Market Cull Sheep: $/Head = $87.60
 - Haul Sheep: Head @ $3.75 = $487.50
 - Market Sheep: $/Head = $1,162.20
 - Virginia Check-off: Head @ $0.50 = $715.00
 - Building & Fence Repairs: Head @ $3.00 = $300.00
 - Utilities: Head @ $0.90 = $90.00
 - Bedding: 50 Lbs per Ewe @ $0.80 = $200.00
 - Machinery (Non-Crop): Head @ $1.78 = $178.00
 - Labor: 2 Hours per Ewe @ $0.00 = $0.00
 - Operating Interest: 6 Months @ $16,780.86 = $436.20
 - Unexpected Expenses: 0.00% @ $16,780.86 = $0.00

4. TOTAL OPERATING EXPENSES

- **Total Operating Expenses**
 - **Total for farm** = $167.81 Per Ewe
 - **Total** = $16,780.86

5. RETURN ABOVE OPERATING EXPENSES

- **Return Above Operating Expenses**
 - **Total for farm** = $11,014.32

6. TOTAL ANNUAL OVERHEAD EXPENSES

- **Total Annual Overhead Expenses**
 - **Total for farm** = $7,120.00

7. TOTAL EXPENSES

- **Total Expenses**
 - **Total for farm** = $23,900.86

8. PROJECTED NET RETURN TO EQUITY, MANAGEMENT, & FAMILY LABOR

- **Projected Net Return**
 - **Total for farm** = $3,894.32

Price Sensitivity Analysis

Percent Change in Total Gross Receipts

<table>
<thead>
<tr>
<th>Percent Change</th>
<th>-10%</th>
<th>-5%</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Cash Return over Total Variable Costs per Ewe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td>$57.44</td>
<td>$113.03</td>
<td>$126.92</td>
<td>$140.82</td>
<td>$154.72</td>
<td>$196.41</td>
</tr>
<tr>
<td>Change in</td>
<td>$49.05</td>
<td>$104.64</td>
<td>$118.53</td>
<td>$132.43</td>
<td>$146.33</td>
<td>$188.02</td>
</tr>
<tr>
<td>Total Variable</td>
<td>$32.26</td>
<td>$65.57</td>
<td>$79.46</td>
<td>$93.36</td>
<td>$107.26</td>
<td>$121.14</td>
</tr>
<tr>
<td>Costs</td>
<td>$10%</td>
<td>$12%</td>
<td>$15%</td>
<td>$18%</td>
<td>$21%</td>
<td>$25%</td>
</tr>
<tr>
<td>Net Cash Return over Total Variable Costs per Ewe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td>$32.26</td>
<td>$65.57</td>
<td>$79.46</td>
<td>$93.36</td>
<td>$107.26</td>
<td>$121.14</td>
</tr>
<tr>
<td>Change in</td>
<td>$49.05</td>
<td>$104.64</td>
<td>$118.53</td>
<td>$132.43</td>
<td>$146.33</td>
<td>$188.02</td>
</tr>
<tr>
<td>Total Variable</td>
<td>$32.26</td>
<td>$65.57</td>
<td>$79.46</td>
<td>$93.36</td>
<td>$107.26</td>
<td>$121.14</td>
</tr>
<tr>
<td>Costs</td>
<td>$10%</td>
<td>$12%</td>
<td>$15%</td>
<td>$18%</td>
<td>$21%</td>
<td>$25%</td>
</tr>
<tr>
<td>Total Variable</td>
<td>$32.26</td>
<td>$65.57</td>
<td>$79.46</td>
<td>$93.36</td>
<td>$107.26</td>
<td>$121.14</td>
</tr>
</tbody>
</table>

Developed by Virginia Cooperative Extension Farm Business Management Staff
10. FEED RATIONS (AS-FED BASIS)

<table>
<thead>
<tr>
<th>Feed</th>
<th>Number Head</th>
<th>Days Fed</th>
<th>E. Gestation 100</th>
<th>Flush L. Gestation 100</th>
<th>Lactation 100</th>
<th>Rams 4</th>
<th>Lambs <60# 148</th>
<th>Lambs 145</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower Hay, Bloom</td>
<td>Lbs/Head/Day</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Hay, 2nd Cutting</td>
<td>Lbs/Head/Day</td>
<td>2.50</td>
<td>0.00</td>
<td>4.20</td>
<td>5.00</td>
<td>6.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Grass Hay, Average</td>
<td>Lbs/Head/Day</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
</tr>
<tr>
<td>Pelleted Supplement</td>
<td>Lbs/Head/Day</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Corn Grain</td>
<td>Lbs/Head/Day</td>
<td>56</td>
<td>0.00</td>
<td>0.75</td>
<td>1.00</td>
<td>1.47</td>
<td>1.00</td>
<td>0.55</td>
</tr>
<tr>
<td>SBOM 48%</td>
<td>Lbs/Head/Day</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>Lime Stone</td>
<td>Lbs/Head/Day</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Dicalc</td>
<td>Lbs/Head/Day</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

11. ANNUAL DEBT SERVICE

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount Borrowed</th>
<th>Percent Interest</th>
<th>Length of Loan</th>
<th>Percent to Sheep</th>
<th>Annual Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewes</td>
<td>0</td>
<td>10.00%</td>
<td>0</td>
<td>100%</td>
<td>$0.00</td>
</tr>
<tr>
<td>Item Name</td>
<td>0</td>
<td>0.00%</td>
<td>0</td>
<td>100%</td>
<td>$0.00</td>
</tr>
<tr>
<td>Item Name</td>
<td>0</td>
<td>0.00%</td>
<td>0</td>
<td>100%</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

TOTAL ANNUAL DEBT PAYMENTS $0.00

12. ANIMAL HEALTH PROGRAM

100 EWES

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Percent</th>
<th>Length</th>
<th>Percent to Sheep</th>
<th>Annual Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin Drench</td>
<td>150 Lbs</td>
<td>6</td>
<td>3 ml/26 Lbs</td>
<td>72.95 /Liter</td>
<td>$7.58</td>
</tr>
<tr>
<td>Ovine Vibrio</td>
<td>5 cc</td>
<td>1</td>
<td>Dose @</td>
<td>0.57 /Dose</td>
<td>$0.57</td>
</tr>
<tr>
<td>8 Way Booster</td>
<td>2 cc</td>
<td>1</td>
<td>Dose @</td>
<td>0.63 /Dose</td>
<td>$0.63</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

SUB-TOTAL EWES & RAMS $912.66

153 LAMBS

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Percent</th>
<th>Length</th>
<th>Percent to Sheep</th>
<th>Annual Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin Drench</td>
<td>78 Lbs</td>
<td>3</td>
<td>3 ml/26 Lbs</td>
<td>72.95 /Liter</td>
<td>$1.97</td>
</tr>
<tr>
<td>BO-SE</td>
<td>0.5 cc</td>
<td>1</td>
<td>Dose @</td>
<td>0.27 /Dose</td>
<td>$0.27</td>
</tr>
<tr>
<td>8 Way</td>
<td>5 cc</td>
<td>1</td>
<td>Dose @</td>
<td>1.58 /Dose</td>
<td>$1.58</td>
</tr>
<tr>
<td>8 Way</td>
<td>2 cc</td>
<td>1</td>
<td>Dose @</td>
<td>0.63 /Dose</td>
<td>$0.63</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

SUB-TOTAL LAMBS $680.80

15 REPLACEMENT EWES

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Percent</th>
<th>Length</th>
<th>Percent to Sheep</th>
<th>Annual Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin Drench</td>
<td>80 Lbs</td>
<td>1</td>
<td>3 ml/26 Lbs</td>
<td>72.95 /Liter</td>
<td>$0.67</td>
</tr>
<tr>
<td>Ovine Vibrio</td>
<td>5 cc</td>
<td>1</td>
<td>Dose @</td>
<td>0.57 /Dose</td>
<td>$0.57</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Dose @</td>
<td>/Dose</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

SUB-TOTAL REPLACEMENT EWES $18.65

Your Farm Veterinarian
1 Trip(s) @ $250 Per Trip $250.00

TOTAL HEALTH COST FOR EWE FLOCK: $1,862.11

Trade and brand names are used only for the purpose of providing information. Virginia Cooperative Extension does not guarantee or warrant the standard of any product named to the exclusion of others which also may be suitable.
Cash Flow Statement

For the Year: 2019

<table>
<thead>
<tr>
<th>Category</th>
<th>Qtr 1</th>
<th>Qtr 2</th>
<th>Qtr 3</th>
<th>Qtr 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Inflows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sale of Market Lambs</td>
<td>$20,592</td>
<td></td>
<td>$5,148</td>
<td></td>
<td>$25,740</td>
</tr>
<tr>
<td>Sale of culls</td>
<td>$620</td>
<td></td>
<td>$1,000</td>
<td></td>
<td>$1,620</td>
</tr>
<tr>
<td>Sale of wool</td>
<td>$435</td>
<td></td>
<td></td>
<td></td>
<td>$435</td>
</tr>
<tr>
<td>Revenue from Custom Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Other Cash Inflows (Transfers, Misc., etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Non-Farm income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>A Total Cash Inflows</td>
<td>$0</td>
<td>$620</td>
<td>$21,027</td>
<td>$6,148</td>
<td>$27,795</td>
</tr>
<tr>
<td>Cash Outflows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car & Truck Expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Conservation Expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Custom Hire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Employee Benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Feed Purchased</td>
<td>$739</td>
<td></td>
<td>$3,800</td>
<td></td>
<td>$4,539</td>
</tr>
<tr>
<td>Fertilizer & Lime</td>
<td></td>
<td>$436</td>
<td></td>
<td>$693</td>
<td>$1,129</td>
</tr>
<tr>
<td>Freight & Trucking</td>
<td></td>
<td></td>
<td>$487</td>
<td></td>
<td>$555</td>
</tr>
<tr>
<td>Gasoline, fuel, oil</td>
<td></td>
<td></td>
<td>$2,178</td>
<td></td>
<td>$5,178</td>
</tr>
<tr>
<td>Insurance</td>
<td>$1,000</td>
<td></td>
<td></td>
<td></td>
<td>$1,000</td>
</tr>
<tr>
<td>Labor hired</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Pension & Profit-Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Rent or lease - M&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Rent/lease - other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Repairs</td>
<td>$300</td>
<td></td>
<td></td>
<td></td>
<td>$300</td>
</tr>
<tr>
<td>Seeds & Plants Purchased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Storage & Warehousing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Supplies Purchased</td>
<td>$100</td>
<td></td>
<td>$100</td>
<td></td>
<td>$200</td>
</tr>
<tr>
<td>Taxes (property)</td>
<td></td>
<td>$1,000</td>
<td></td>
<td>$1,000</td>
<td>$2,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$25</td>
<td>$20</td>
<td>$20</td>
<td>$25</td>
<td>$90</td>
</tr>
<tr>
<td>Vet, breeding, medicine</td>
<td></td>
<td>$931</td>
<td></td>
<td>$931</td>
<td>$1,862</td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
<td></td>
<td>$1,000</td>
<td></td>
<td>$1,322</td>
</tr>
<tr>
<td>Other</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
<td>$1,600</td>
</tr>
<tr>
<td>Capital Purchases (Cash)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Principal Payments - Term Debt</td>
<td>$712</td>
<td>$713</td>
<td>$712</td>
<td>$713</td>
<td>$2,850</td>
</tr>
<tr>
<td>Interest Payments - Term Debt</td>
<td>$313</td>
<td>$312</td>
<td>$313</td>
<td>$312</td>
<td>$1,250</td>
</tr>
<tr>
<td>Family Living Expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>Income Taxes (including SE & Payroll taxes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>B Total Cash Outflows</td>
<td>$3,289</td>
<td>$7,290</td>
<td>$5,932</td>
<td>$8,364</td>
<td>$24,875</td>
</tr>
<tr>
<td>C Net Cash Flow</td>
<td>-$3,289</td>
<td>-$6,670</td>
<td>$15,095</td>
<td>-$2,216</td>
<td>$2,921</td>
</tr>
<tr>
<td>D Beginning Cash Balance</td>
<td>$5,000</td>
<td>$1,712</td>
<td>$1,000</td>
<td>$9,898</td>
<td>$5,000</td>
</tr>
<tr>
<td>E Unadjusted Cash Balance</td>
<td>$1,712</td>
<td>-$4,959</td>
<td>$16,095</td>
<td>$7,682</td>
<td>$7,921</td>
</tr>
<tr>
<td>F Minimum Balance Desired</td>
<td>$1,000</td>
<td>$1,000</td>
<td>$1,000</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>G Cash Avail. to Repay Operating Loan</td>
<td>$712</td>
<td>$0</td>
<td>$15,095</td>
<td>$6,682</td>
<td>$0</td>
</tr>
<tr>
<td>H Operating Loan Needed</td>
<td>$0</td>
<td>$5,959</td>
<td>$0</td>
<td>$5,959</td>
<td>$5,959</td>
</tr>
<tr>
<td>I Cumulative Operating Loan Balance</td>
<td>$0</td>
<td>$5,959</td>
<td>$5,959</td>
<td>$5,959</td>
<td>$5,959</td>
</tr>
<tr>
<td>J Accrued Interest on Operating Loan</td>
<td>$0</td>
<td>$119</td>
<td>$238</td>
<td>$0</td>
<td>$238</td>
</tr>
<tr>
<td>K Interest Paid on Operating Loan</td>
<td>$0</td>
<td>$0</td>
<td>$238</td>
<td>$0</td>
<td>$238</td>
</tr>
<tr>
<td>L Cash Available to Repay Op Loan Principal</td>
<td>$712</td>
<td>$0</td>
<td>$14,857</td>
<td>$6,682</td>
<td>$0</td>
</tr>
<tr>
<td>M Operating Loan Principal Repaid</td>
<td>$0</td>
<td>$0</td>
<td>$5,959</td>
<td>$0</td>
<td>$5,959</td>
</tr>
<tr>
<td>N Ending Cash Balance</td>
<td>$1,712</td>
<td>$1,000</td>
<td>$9,898</td>
<td>$7,682</td>
<td>$7,682</td>
</tr>
</tbody>
</table>
Nutrition of the flock is a key component in the sheep enterprise. Proper nutrition is vital for health and optimum performance of both the breeding flock and lamb crop. Additionally, feed costs represent the largest component of the sheep enterprise budget. Therefore, cost-effective strategies which meet the nutritional demands while keeping costs in check are key. Proper ration balancing is important for both of these aspects.

Ration formulation and balancing is a multi-step process, yet does not need to be complicated. These steps include: 1) accurately describing the sheep to be fed, and knowing their corresponding nutritional requirements, 2) describing your feedstuffs and their nutritional value, and 3) balancing the ration to meet the nutritional needs of the sheep. Within each of these steps are several key components which will be described in this article.

Describing the Sheep & their Nutritional Requirements

There are several factors that affect the nutritional needs of the sheep, the primary factors include: 1) age, 2) size (weight), 3) body condition, and 4) stage of production (maintenance, gestation, lactation, growth rate). Additionally, health status (including parasite load), weather, activity level, and other environmental factors may also influence nutritional requirements and management. However, the answers to such questions as Is the ewe pregnant? If so, which stage of pregnancy is she in? If lactating, how many lambs is she nursing? When will the lambs be weaned? should provide the shepherd the information necessary to make decisions relative to nutritional needs. The ewe’s nutritional needs change throughout the production cycle (lactation > pregnancy > breeding > maintenance). Similarly, nutritional needs of growing lambs change with the stage of maturity and growth rate. Generally, nutritional requirements are highest for young lambs and decrease for older lambs and higher growth rates increase nutritional requirements.

Fundamentally, nutritional requirements are described based on stage of production and weight. For ewes stage of production is defined as lactation vs. gestation, etc. along with number of lambs nursed. For lambs nutritional requirements are based on age and growth rate. In all cases, body weight of the animal further defines nutritional requirements (coupled with described stage of production). Therefore, an accurate weight is a necessary component of ration balancing.

Table 1 describes nutrient requirements of ewes based on stage of production and body weight. These requirements are shown in pounds of nutrient required per day. For example, a 175 pound ewe which is nursing twins requires 4.7 lb. of TDN (energy), along with 0.98 lb. of crude protein daily to meet her nutritional requirements. This TDN and CP can be supplied through a variety of feedstuffs (next steps), however based on her stage of production (nursing twins) and weight, we can determine her nutritional requirements. Table 1 also shows that 175 lb. ewe nursing twins will consume 6.6 lb. of dry matter daily. This is simply how much feed we would expect her to eat daily on a dry basis. For all practical purposes, dry feeds and forages contain approximately 90% dry matter. Dry matter is feed with no moisture, however all feeds contain some water/moisture (~10% for dry feedstuffs like hay and grain). Therefore, on an as-fed basis (how we will measure feed and deliver to the sheep) this ewe will eat approximately 7.3 pounds (6.6 divided by 0.90 = 7.3). Nutrient requirements are expressed on a dry matter basis to account for differences in moisture between feeds. An example to help understand this is comparing a grape to a raisin. Both have exactly the same nutritional content, just the grape has a much higher water content (and grapes are therefore heavier than raisins). So on a
weight basis, we would need to eat more pounds of grapes than raisins to provide the same nutrition.

Table 2 shows nutrient requirements expressed as a percentage of total diet. These values are obtained by dividing individual nutrients requirements by dry matter intake. For example, above we indicated the 175 lb. ewe nursing twins requires 4.7 lbs. of TDN. So if we divide these 4.7 lb. by her intake of 6.6 lbs., her total diet needs to be 71% TDN. So if we feed her a ration that is 71% TDN and she consumes 6.6 lbs. of dry matter of this diet, she meets her requirement.

Table 3 is nutrient requirements for ewe lambs. Ewe lambs have additional nutritional requirements than mature ewes to account for their additional needs for growth, since they are not yet mature.

Feedstuffs and their Nutrient Content

The second step includes knowledge of available feedstuffs and their nutritional value. Multiple resources exist for these values. See the attached supplement sheet for a list of common feeds and their average values for various nutrients. While variation does exist for many feeds, typically these book values are applicable to common grain and protein feeds (corn, oats, soybean meal, etc.). Consequently, when balancing rations these values can be used. One exception can be by-product feeds such as corn gluten, as they can be variable in nutrient content related to the source of the feed and processing methods.

While book values for common grains and supplements are typically used to balance rations, forages and hays are highly variable in their nutritional content. Therefore, a for An important aspect of nutritional management is knowing the quality of forages that will be utilized, most importantly hay. To properly balance rations and formulate diets, an accurate forage analysis should be conducted on all harvested feeds (hays and silage). There can be significant variation in hays harvested from the same field from one year to the next, and from one cutting to another. Having accurate hay analysis will both save feed costs and improve the ability to adequately balance rations. Consult with your local Extension agent for assistance in sampling your forages. Don't guess, forage test!

Balancing Rations

With description of sheep we are feeding, and description of feeds we are using, we can balance the ration. There are several methods which can be used, ranging from very simple approaches which can be done by hand to the use of complex computer programs. We will concentrate on some simple approaches which can be applied by most.

Assume we have the 175 lb. ewe nursing twins described earlier. Lets also assume we had our hay tested, and results provided our hay is 63% TDN and 15.5% crude protein on a dry matter basis. If we provide this hay free-choice, we would expect the ewe to eat 6.6 lbs. of dry matter (from Table 1). If she eats 6.6 lbs. of dry matter which is 60% TDN, she will consume 4.2 lbs. of TDN daily (6.6 x .60 = 4.0). This is a little short of her requirement of 4.7 lb. of TDN found in Table 1. Therefore we will need to supplement this had with additional TDN. Corn is typically a cheap source of TDN, and corn contains 87% TDN. So to supply the additional 0.7 lbs. of TDN the ewe needs to meet her requirement, we would need to provide her 0.8 lbs of corn to meet her TDN needs (0.7 divided by 87% = .6). Keep in mind our math is on a dry matter basis, so assuming corn is 90% dry matter, we need to feed her 0.9 lbs. of corn as fed. So feeding her 1 lb. of corn will do it, assuming she continues to eat the same amount of hay. Of course, how much hay she is actually eating is important- as eating more or less than the 6.6 pounds we estimated will change our math and determination of how much supplemental corn she needs. This underlines the importance of monitoring intakes and having a solid estimate of hay consumption to properly balance rations. The hay used in this example is above average in quality, and supplementing TDN during lactation is common need to meet ewe requirements.
The other important component in this example is crude protein. Using the same approach, the ewe will get approximately 1.0 pound of CP from the 6.6 pounds of hay she is consuming (6.6 x 15.5% = 1.0). This meets her requirement based on Table 1. If our hay was lower in CP (which is not uncommon), we would need to take similar approach as we did with TDN to estimate the additional CP we would need to supplement to meet the ewes needs. When both TDN and CP are needed, feeds such as corn gluten which are nutrient dense for both TDN and CP are viable options.

Another approach to ration balancing can be to determine the nutrient content needed in a supplement to be fed. For example, assume from our hay testing and doing math similar to above we determine our ewes need an additional ~2.0 lbs. of TDN and additional 0.5 lbs. CP to meet their requirements. If we want to purchase or mix a supplement to match this hay and meet the requirements of the ewes we can determine the nutritional profile this supplement needs to contain. Assume we want to feed the supplement at a rate of 3.0 pounds per head per day. So to provide 2.0 lbs. of TDN in 3.0 of feed, the feed needs to be 67% TDN (2.0 divided by 3.0 = 67%). Similarly, that same feed needs to be 16% CP (0.5 divided by 3.0 = 16%). We can then purchase or mix a supplement according to these specifications (to be fed at a rate of 3 lbs per head per day along with our hay).

Several simple ration balancing spreadsheets have been developed for sheep. Advantages of these programs include the ability to evaluate several options for supplementation, incorporating cost factors, and more comprehensive ration balancing capability for minerals and micro-nutrients compared to doing so by hand. A sample of such programs include:

- University of Maryland (free)- https://www.sheepandgoat.com/spreadsheets
- North Dakota State (free)- https://www.ag.ndsu.edu/ansc/faculty-biographies/sheep-ration-balancer-bauer/view
- Iowa State BRaNDS ($100+)- https://store.extension.iastate.edu/Product/BRaNDS-Sheep-Companion-Module-Standard-Edition

Perhaps as important as the ability to balance rations, these tools provide the ability to evaluate what is being fed against nutritional requirements (same as for calculations done by hand outlined earlier). Doing so can identify shortcomings in a ration and identify deficiencies which may limit performance. Just as importantly, these tools can evaluate a ration to determine if sheep are being overfed. Overfeeding is expensive, and can potentially cause health issues such as pregnancy toxemia in gestating ewes. Therefore basic ration balancing and evaluation skills are beneficial for all shepherds.

General Tips- Formulating Rations

Commercial bagged/purchased feeds certainly offer many advantages in terms of ease of use and convenience. Furthermore, typically these feeds are formulated to provide a balanced nutritional profile of major nutrients (TDN, CP), minerals, and vitamins. Keep in mind that these commercial feeds should be formulated for sheep, as sheep have some unique nutritional needs not common to other species.

Mixing feeds at home, or working with a local feed mill to do so are also viable options. Keep in mind that when mixing your own feed, all important nutrients need to be evaluated and included properly to provide a balanced diet. In general, home mixes for the ewe flock are simpler compared to growing lamb rations. Some general tips when mixing your own rations:

- Minerals and Vitamins- both the macro minerals (calcium and phosphorus) and micro minerals (selenium, copper, etc.) are important. Feed grade limestone is commonly added to rations at rate of 0.5-1.0 for additional calcium required by ewes and growing lambs, and to insure proper Ca:P ratios (prevention of urinary calculi). Most energy feeds are high in phosphorus and need complimented with added calcium. A trace mineral supplement to provide micro minerals and vitamins is recommended for lactating ewe and growing lamb rations. Such
supplements are available commercially and can be added to mixed rations at recommended inclusion rate. White salt is commonly added at rate of 0.5% of total ration. Ammonium chloride added at rate of 0.5% of ration can assist with preventing urinary calculi in growing lambs.

By product feeds- many of these feeds, like corn gluten feed, are excellent sources of nutrition economically. However, they can be variable in nutrient content. Work with your supplier to obtain a nutrient analysis for use in formulating rations. Typically, these feeds are low in calcium and require supplementation accordingly. Many mills also have commodity mixes, which may contain several of these feedstuffs mixed together. Also be sure to get the nutrient analysis of these products.
<table>
<thead>
<tr>
<th>Stage of Production</th>
<th>Body Wt. (lb.)</th>
<th>Wt. gain or loss (lb.)</th>
<th>DM intake/day<sup>a</sup> (lb.)</th>
<th>Energy TDN (lb.)</th>
<th>Protein (lb.)</th>
<th>Ca (g)</th>
<th>P (g)</th>
<th>Vit. A (IU)</th>
<th>Vit. D (IU)</th>
<th>Vit. E (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>150</td>
<td>.02</td>
<td>2.6</td>
<td>1.5</td>
<td>.25</td>
<td>2.5</td>
<td>2.4</td>
<td>3290</td>
<td>378</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>.02</td>
<td>2.9</td>
<td>1.6</td>
<td>.27</td>
<td>2.7</td>
<td>2.8</td>
<td>3760</td>
<td>441</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>.02</td>
<td>3.1</td>
<td>1.7</td>
<td>.29</td>
<td>2.9</td>
<td>3.1</td>
<td>4230</td>
<td>505</td>
<td>22</td>
</tr>
<tr>
<td>Flushing</td>
<td>150</td>
<td>.22</td>
<td>4.0</td>
<td>2.3</td>
<td>.36</td>
<td>5.7</td>
<td>3.2</td>
<td>3290</td>
<td>378</td>
<td>27</td>
</tr>
<tr>
<td>(2 wk. prebreeding & 1<sup>st</sup> 4 wk. breeding)</td>
<td>175</td>
<td>.22</td>
<td>4.2</td>
<td>2.5</td>
<td>.38</td>
<td>5.9</td>
<td>3.6</td>
<td>3760</td>
<td>441</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>.22</td>
<td>4.4</td>
<td>2.6</td>
<td>.39</td>
<td>6.1</td>
<td>3.9</td>
<td>4230</td>
<td>505</td>
<td>29</td>
</tr>
<tr>
<td>1<sup>st</sup> 15 wk. gestation</td>
<td>150</td>
<td>.07</td>
<td>3.1</td>
<td>1.7</td>
<td>.29</td>
<td>3.5</td>
<td>2.9</td>
<td>3290</td>
<td>378</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>.07</td>
<td>3.3</td>
<td>1.8</td>
<td>.31</td>
<td>3.8</td>
<td>3.3</td>
<td>3760</td>
<td>441</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>.07</td>
<td>3.5</td>
<td>1.9</td>
<td>.33</td>
<td>4.1</td>
<td>3.6</td>
<td>4230</td>
<td>505</td>
<td>24</td>
</tr>
<tr>
<td>Last 4 wk. gestation</td>
<td>150</td>
<td>.40</td>
<td>4.0</td>
<td>2.3</td>
<td>.42</td>
<td>6.2</td>
<td>5.6</td>
<td>5950</td>
<td>378</td>
<td>27</td>
</tr>
<tr>
<td>(130-150% lamb crop)</td>
<td>175</td>
<td>.40</td>
<td>4.2</td>
<td>2.4</td>
<td>.44</td>
<td>6.3</td>
<td>6.1</td>
<td>6800</td>
<td>441</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>.40</td>
<td>4.4</td>
<td>2.5</td>
<td>.77</td>
<td>6.4</td>
<td>6.5</td>
<td>7650</td>
<td>505</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>.50</td>
<td>4.2</td>
<td>2.8</td>
<td>.47</td>
<td>7.6</td>
<td>4.5</td>
<td>5950</td>
<td>378</td>
<td>28</td>
</tr>
<tr>
<td>(180-225% lamb crop)</td>
<td>175</td>
<td>.50</td>
<td>4.4</td>
<td>2.9</td>
<td>.49</td>
<td>8.3</td>
<td>5.1</td>
<td>6800</td>
<td>441</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>.50</td>
<td>4.6</td>
<td>3.0</td>
<td>.51</td>
<td>8.9</td>
<td>5.7</td>
<td>7650</td>
<td>505</td>
<td>32</td>
</tr>
<tr>
<td>Lactation (1<sup>st</sup> 8 wk.)</td>
<td>150</td>
<td>-.06</td>
<td>5.5</td>
<td>3.6</td>
<td>.73</td>
<td>9.3</td>
<td>7.0</td>
<td>5950</td>
<td>378</td>
<td>38</td>
</tr>
<tr>
<td>Nursing single</td>
<td>175</td>
<td>-.06</td>
<td>5.7</td>
<td>3.7</td>
<td>.76</td>
<td>9.5</td>
<td>7.4</td>
<td>6800</td>
<td>441</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-.06</td>
<td>5.9</td>
<td>3.8</td>
<td>.78</td>
<td>9.6</td>
<td>7.8</td>
<td>7650</td>
<td>505</td>
<td>40</td>
</tr>
<tr>
<td>Nursing twins</td>
<td>150</td>
<td>-.13</td>
<td>6.2</td>
<td>4.4</td>
<td>.94</td>
<td>11.2</td>
<td>8.4</td>
<td>7000</td>
<td>378</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>-.13</td>
<td>6.6</td>
<td>4.7</td>
<td>.98</td>
<td>11.4</td>
<td>8.8</td>
<td>8000</td>
<td>441</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-.13</td>
<td>7.0</td>
<td>5.0</td>
<td>1.01</td>
<td>11.6</td>
<td>9.2</td>
<td>9000</td>
<td>505</td>
<td>48</td>
</tr>
<tr>
<td>Nursing triplets</td>
<td>150</td>
<td>-.20</td>
<td>6.5</td>
<td>4.9</td>
<td>1.04</td>
<td>12.2</td>
<td>9.0</td>
<td>8000</td>
<td>378</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>-.20</td>
<td>7.2</td>
<td>5.2</td>
<td>1.08</td>
<td>12.4</td>
<td>9.4</td>
<td>9000</td>
<td>441</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>-.20</td>
<td>8.0</td>
<td>5.5</td>
<td>1.11</td>
<td>12.6</td>
<td>9.6</td>
<td>10,000</td>
<td>505</td>
<td>53</td>
</tr>
</tbody>
</table>

^aValues adopted from National Research Council for Sheep, 6th Ed.

^bTo convert dry matter to an as-fed basis, divide by percent dry matter.
Table 2. Daily Nutrient Concentrations in Diets for Mature Ewesa
(175 lb. body weight)

<table>
<thead>
<tr>
<th>Stage of Production</th>
<th>DM intake/dayb (lb.)</th>
<th>Energy TDN (%)</th>
<th>Protein (%)</th>
<th>Ca (%)</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>2.9</td>
<td>55</td>
<td>9.3</td>
<td>.19</td>
<td>.21</td>
</tr>
<tr>
<td>Flushing</td>
<td>4.2</td>
<td>60</td>
<td>9.0</td>
<td>.31</td>
<td>.19</td>
</tr>
<tr>
<td>1st 15 wk. gestation</td>
<td>3.3</td>
<td>55</td>
<td>9.4</td>
<td>.25</td>
<td>.21</td>
</tr>
<tr>
<td>Last 4 wk. gestation (130-150% lamb crop)</td>
<td>4.2</td>
<td>57</td>
<td>10.5</td>
<td>.33</td>
<td>.32</td>
</tr>
<tr>
<td>(180-225% lamb crop)</td>
<td>4.4</td>
<td>66</td>
<td>11.1</td>
<td>.41</td>
<td>.25</td>
</tr>
<tr>
<td>Lactation (1st 8 wk.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing single</td>
<td>5.7</td>
<td>65</td>
<td>13.3</td>
<td>.37</td>
<td>.28</td>
</tr>
<tr>
<td>Nursing twins</td>
<td>6.6</td>
<td>71</td>
<td>14.8</td>
<td>.38</td>
<td>.29</td>
</tr>
<tr>
<td>Nursing triplets</td>
<td>7.2</td>
<td>72</td>
<td>15.0</td>
<td>.38</td>
<td>.29</td>
</tr>
</tbody>
</table>

aValues adopted from National Research Council for Sheep, 6th Ed.
Values converted from Table 1 by dividing requirement by DM intake.
bTo convert dry matter to an as-fed basis, divide by percent dry matter.
Table 3. Daily Nutrient Requirements of Ewe Lambs

<table>
<thead>
<tr>
<th>Stage of Production</th>
<th>Body Wt. (lb.)</th>
<th>Wt. gain or loss (lb.)</th>
<th>DM intake/day<sup>b</sup> (lb.)</th>
<th>Energy TDN (lb.)</th>
<th>Protein (lb.)</th>
<th>Ca (g)</th>
<th>P (g)</th>
<th>Vit. A (IU)</th>
<th>Vit. D (IU)</th>
<th>Vit. E (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> 15 wk. gestation</td>
<td>110</td>
<td>.30</td>
<td>3.3</td>
<td>1.9</td>
<td>.35</td>
<td>5.2</td>
<td>3.1</td>
<td>2350</td>
<td>277</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>.30</td>
<td>3.5</td>
<td>2.0</td>
<td>.35</td>
<td>5.5</td>
<td>3.4</td>
<td>2820</td>
<td>333</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>.28</td>
<td>3.7</td>
<td>2.2</td>
<td>.36</td>
<td>5.5</td>
<td>3.7</td>
<td>3290</td>
<td>389</td>
<td>26</td>
</tr>
<tr>
<td>Last 4 wk. gestation</td>
<td>110</td>
<td>.35</td>
<td>3.5</td>
<td>2.2</td>
<td>.42</td>
<td>6.3</td>
<td>3.4</td>
<td>4250</td>
<td>277</td>
<td>24</td>
</tr>
<tr>
<td>(100-120% lamb crop)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>.35</td>
<td>3.7</td>
<td>2.4</td>
<td>.42</td>
<td>6.6</td>
<td>3.8</td>
<td>5100</td>
<td>333</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>.33</td>
<td>4.0</td>
<td>2.5</td>
<td>.43</td>
<td>6.8</td>
<td>4.2</td>
<td>5950</td>
<td>389</td>
<td>27</td>
</tr>
<tr>
<td>(135-175% lamb crop)</td>
<td>110</td>
<td>.50</td>
<td>3.5</td>
<td>2.4</td>
<td>.45</td>
<td>7.8</td>
<td>3.9</td>
<td>4250</td>
<td>277</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>.50</td>
<td>3.7</td>
<td>2.6</td>
<td>.46</td>
<td>8.1</td>
<td>4.3</td>
<td>5200</td>
<td>333</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>.47</td>
<td>4.0</td>
<td>2.7</td>
<td>.46</td>
<td>8.2</td>
<td>4.7</td>
<td>5950</td>
<td>389</td>
<td>27</td>
</tr>
<tr>
<td>Lactation (1<sup>st</sup> 8 wk.)</td>
<td>110</td>
<td>-10</td>
<td>4.6</td>
<td>3.3</td>
<td>.62</td>
<td>6.5</td>
<td>4.7</td>
<td>4250</td>
<td>277</td>
<td>32</td>
</tr>
<tr>
<td>Nursing single</td>
<td>130</td>
<td>-.10</td>
<td>5.1</td>
<td>3.6</td>
<td>.65</td>
<td>6.8</td>
<td>5.1</td>
<td>5200</td>
<td>333</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>-.10</td>
<td>5.5</td>
<td>3.8</td>
<td>.68</td>
<td>7.1</td>
<td>5.6</td>
<td>5950</td>
<td>389</td>
<td>38</td>
</tr>
<tr>
<td>Nursing twins</td>
<td>110</td>
<td>-.22</td>
<td>5.1</td>
<td>3.7</td>
<td>.71</td>
<td>8.7</td>
<td>6.0</td>
<td>5000</td>
<td>277</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>-.22</td>
<td>5.5</td>
<td>4.0</td>
<td>.74</td>
<td>9.0</td>
<td>6.4</td>
<td>6000</td>
<td>333</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>-.22</td>
<td>6.0</td>
<td>4.3</td>
<td>.77</td>
<td>9.3</td>
<td>6.9</td>
<td>7000</td>
<td>389</td>
<td>40</td>
</tr>
</tbody>
</table>

^aValues adopted from National Research Council for Sheep, 6th Ed.

^bTo convert dry matter to an as-fed basis, divide by percent dry matter.
Outstanding Sheep Producer Award Recipients

2017 – Burke Simmons, Augusta County
2016 – Cecil King, Pulaski County
2015 – Larry & Lisa Weeks, Augusta County
2014 – Jeff Lawson, Augusta County
2013 – Laura Begoon, Rockingham County
2012 – Sonny and Ashley Balsley, Augusta County
2011 – Leo Tammi, Augusta County
2010 – Bobbi Hefner, Highland County
2009 – Mac Swortzel, Augusta County
2008 – David Shiflett, Augusta County
2007 – Doug Riley, Augusta County
2006 – Mike Carpenter, VDACS
2005 – Jim Wolford, Wythe County
2004 – Martha Mewbourne, Scott County
2004 – David Redwine, Scott County
2003 – Martha Polkey, Loudoun County
2002 – Carlton Truxell, Augusta County
2001 – Corey Childs, Clarke County
2000 – John Sponaugle, Rockingham County
1999 – Bill Stephenson, Page County
1998 – Gary Hornbaker, Clarke County
1997 – Bruce Shiley, Clarke County
1996 - Weldon Dean, Rockingham County
1995 - Bill Wade, Augusta County
1994 - John Henry Smith, Russell County
1993 - Robin Freeman, Chesapeake
1992 - Courtland Spotts, Pulaski County
1991 - Ted Bennett, Halifax County
1990 - Clinton Bell, Tazewell County
1989 - Rex Wightman, Shenandoah County
1988 - Tim Sutphin, Pulaski County
1987 - Zan Stuart, Russell County
1986 - J. W. Riley, Augusta County
1985 - John Bauserman, Fauquier County
1984 - Roy Meek, Pulaski County
1983 - Jonathan May, Rockingham County